Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 142(7): 1956-1965.e2, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34890627

RESUMO

Cutaneous squamous cell carcinoma (cSCC) comprises 15‒20% of all skin cancers and has a well-defined progression sequence from precancerous actinic keratosis to invasive cSCC. To identify targets for chemoprevention, we previously reported a cross-species analysis to identify the transcriptional drivers of cSCC development and identified miR-181a as a potential oncomiR. We show that the upregulation of miR-181a promotes multiple protumorigenic properties by targeting an understudied component of TGFß signaling, TGFßR3. miR-181a and TGFßR3 are upregulated and downregulated, respectively, in cSCC. miR-181a overexpression (OE) and TGFßR3 knockdown (KD) significantly suppresses UV-induced apoptosis in HaCaT cells and in primary normal human epidermal keratinocytes. In addition, OE of miR-181a or KD of TGFßR3 by short hairpin RNA enhances anchorage-independent survival. miR-181a OE or TGFßR3 KD enhances cellular migration and invasion and upregulation of epithelial‒mesenchymal transition markers. Luciferase reporter assays demonstrate that miR-181a directly targets the 3'-untranslated region of TGFßR3. miR-181a upregulates phosphorylated SMAD3 levels after TGFß2 administration and results in elevated SNAIL and SLUG expression. Finally, we confirm in vivo that miR-181a inhibition compromises tumor growth. Importantly, these phenotypes can be reversed with TGFßR3 OE or KD in the context of miR-181a OE or KD, respectively, further highlighting the physiologic relevance of this regulation in cSCC.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Proteoglicanas , Receptores de Fatores de Crescimento Transformadores beta , Neoplasias Cutâneas , Regiões 3' não Traduzidas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Neoplasias Cutâneas/patologia
2.
Eur Urol Oncol ; 5(2): 164-175, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34774481

RESUMO

BACKGROUND: No curative therapy is currently available for metastatic prostate cancer (PCa). The diverse mechanisms of progression include fibroblast growth factor (FGF) axis activation. OBJECTIVE: To investigate the molecular and clinical implications of fibroblast growth factor receptor 1 (FGFR1) and its isoforms (α/ß) in the pathogenesis of PCa bone metastases. DESIGN, SETTING, AND PARTICIPANTS: In silico, in vitro, and in vivo preclinical approaches were used. RNA-sequencing and immunohistochemical (IHC) studies in human samples were conducted. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: In mice, bone metastases (chi-square/Fisher's test) and survival (Mantel-Cox) were assessed. In human samples, FGFR1 and ladinin 1 (LAD1) analysis associated with PCa progression were evaluated (IHC studies, Fisher's test). RESULTS AND LIMITATIONS: FGFR1 isoform expression varied among PCa subtypes. Intracardiac injection of mice with FGFR1-expressing PC3 cells reduced mouse survival (α, p < 0.0001; ß, p = 0.032) and increased the incidence of bone metastases (α, p < 0.0001; ß, p = 0.02). Accordingly, IHC studies of human castration-resistant PCa (CRPC) bone metastases revealed significant enrichment of FGFR1 expression compared with treatment-naïve, nonmetastatic primary tumors (p = 0.0007). Expression of anchoring filament protein LAD1 increased in FGFR1-expressing PC3 cells and was enriched in human CRPC bone metastases (p = 0.005). CONCLUSIONS: FGFR1 expression induces bone metastases experimentally and is significantly enriched in human CRPC bone metastases, supporting its prometastatic effect in PCa. LAD1 expression, found in the prometastatic PCa cells expressing FGFR1, was also enriched in CRPC bone metastases. Our studies support and provide a roadmap for the development of FGFR blockade for advanced PCa. PATIENT SUMMARY: We studied the role of fibroblast growth factor receptor 1 (FGFR1) in prostate cancer (PCa) progression. We found that PCa cells with high FGFR1 expression increase metastases and that FGFR1 expression is increased in human PCa bone metastases, and identified genes that could participate in the metastases induced by FGFR1. These studies will help pinpoint PCa patients who use fibroblast growth factor to progress and will benefit by the inhibition of this pathway.


Assuntos
Neoplasias Ósseas , Neoplasias de Próstata Resistentes à Castração , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Fatores de Crescimento de Fibroblastos , Humanos , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/patologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
3.
Clin Cancer Res ; 27(11): 3253-3264, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33753455

RESUMO

PURPOSE: Radium-223 prolongs survival in a fraction of men with bone metastatic prostate cancer (PCa). However, there are no markers for monitoring response and resistance to Radium-223 treatment. Exosomes are mediators of intercellular communication and may reflect response of the bone microenvironment to Radium-223 treatment. We performed molecular profiling of exosomes and compared the molecular profile in patients with favorable and unfavorable overall survival. EXPERIMENTAL DESIGN: We performed exosomal transcriptome analysis in plasma derived from our preclinical models (MDA-PCa 118b tumors, TRAMP-C2/BMP4 PCa) and from the plasma of 25 patients (paired baseline and end of treatment) treated with Radium-223. All samples were run in duplicate, and array data analyzed with fold changes +2 to -2 and P < 0.05. RESULTS: We utilized the preclinical models to establish that genes derived from the tumor and the tumor-associated bone microenvironment (bTME) are differentially enriched in plasma exosomes upon Radium-223 treatment. The mouse transcriptome analysis revealed changes in bone-related and DNA damage repair-related pathways. Similar findings were observed in plasma-derived exosomes from patients treated with Radium-223 detected changes. In addition, exosomal transcripts detected immune-suppressors (e.g., PD-L1) that were associated with shorter survival to Radium-223. Treatment of the Myc-CaP mouse model with a combination of Radium-223 and immune checkpoint therapy (ICT) resulted in greater efficacy than monotherapy. CONCLUSIONS: These clinical and coclinical analyses showed that RNA profiling of plasma exosomes may be used for monitoring the bTME in response to treatment and that ICT may be used to increase the efficacy of Radium-223.


Assuntos
Neoplasias Ósseas/secundário , Vesículas Extracelulares/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/uso terapêutico , Rádio (Elemento)/farmacologia , Rádio (Elemento)/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Animais , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Exossomos/genética , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Neoplasias da Próstata/mortalidade , RNA/genética , Taxa de Sobrevida
4.
ACS Med Chem Lett ; 8(6): 622-627, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28626522

RESUMO

Acetylcholinesterase (AChE) is an essential enzyme that can be targeted by organophosphorus (OP) compounds, including nerve agents. Following exposure to OPs, AChE becomes phosphylated (inhibited) and undergoes a subsequent aging process where the OP-AChE adduct is dealkylated. The aged AChE is unable to hydrolyze acetylcholine, resulting in accumulation of the neurotransmitter in the central nervous system (CNS) and elsewhere. Current therapeutics are only capable of reactivating inhibited AChE. There are no known therapeutic agents to reverse the aging process or treat aged AChE. Quinone methides (QMs) have been shown to alkylate phosphates under physiological conditions. In this study, a small library of novel quinone methide precursors (QMPs) has been synthesized and examined as potential alkylating agents against model nucleophiles, including a model phosphonate. Computational studies have been performed to evaluate the affinity of QMPs for the aged AChE active site, and preliminary testing with electric eel AChE has been performed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA