Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 362: 121352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833930

RESUMO

The increased production of polystyrene waste has led to the need to find efficient ways to dispose of it. One possibility is the use of solid waste to produce filter media by the electrospinning technique. The aim of this work was to develop an ultra-fast electrospinning process applied to recycled polystyrene, with statistical evaluation of the influence of polymeric solution parameters (polymer concentration and percentage of DL-limonene) and process variables (flow rate, voltage, and type of support) on nanoparticle collection efficiency, air permeability, and fiber diameter. An extensive characterization of the materials and evaluation of the morphology of the fibers was also carried out. It was found that recycled expanded polystyrene could be used in electrospinning to produce polymeric membranes. The optimized condition that resulted in the highest nanoparticle collection efficiency was a polymer concentration of 13.5%, percentage of DL-limonene of 50%, voltage of 25 kV, and flow rate of 1.2 mL/h, resulting in values of 99.97 ± 0.01%, 2.6 ± 0.5 × 10-13 m2, 0.19 Pa-1, and 708 ± 176 nm for the collection efficiency of nanoparticles in the range from 6.38 to 232.9 nm, permeability, quality factor, and mean fiber diameter, respectively. All the parameters were found to influence collection efficiency and fiber diameter. The use of DL-limonene, a natural solvent, provided benefits including increased collection efficiency and decreased fiber size. In addition, the electrostatic filtration mechanism was evaluated using the presence of a copper grid as a support for the nanofibers. The findings demonstrated that an electrospinning time of only 5 min was sufficient to obtain filters with high collection efficiencies and low pressure drops, opening perspectives for the application of polystyrene waste in the development of materials with excellent characteristics for application in the area of atmospheric pollution mitigation.


Assuntos
Filtração , Nanopartículas , Poliestirenos , Poliestirenos/química , Nanopartículas/química , Filtração/métodos , Membranas Artificiais , Polímeros/química , Reciclagem , Permeabilidade
2.
Nanomaterials (Basel) ; 9(12)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817692

RESUMO

Often, solid matter is separated from particle-laden flow streams using electrospun filters due to their high specific surface area, good ability to capture aerial particulate matter, and low material costs. Moreover, electrospinning allows incorporating nanoparticles to improve the filter's air filtration efficiency and bacterial removal. Therefore, a new, improved polyacrylonitrile (PAN) nanofibers membrane that could be used to remove air pollutants and also with antibacterial activity was developed. We engineered three different filters that are characterized by the different particles embedded in the PAN nanofibers: titanium dioxide (TiO2), zinc oxide (ZnO), and silver (Ag). Then, their filtration performance was assessed by quantifying the filtration of sodium chloride (NaCl) aerosol particles of 9 to 300 nm in diameter using a scanning mobility particle sizer. The TiO2_F filter displayed the smallest fiber diameter and the highest filtration efficiency (≈100%). Conversely, the Ag_F filter showed the highest quality factor (≈0.06 Pa-1) because of the lower air pressure drop. The resulting Ag_F nanofibers displayed a very good antibacterial activity using an Escherichia coli suspension (108 CFU/mL). Moreover, the quality factor of these membranes was higher than that of the commercially available nanofiber membrane for air filtration.

3.
Mater Sci Eng C Mater Biol Appl ; 102: 718-729, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31147044

RESUMO

Human exposure to air pollution and especially to nanoparticles is increasing due to the combustion of carbon-based energy vectors. Fibrous filters are among the various types of equipment potentially able to remove particles from the air. Nanofibers are highly effective in this area; however, their utilization is still a challenge due to the lack of studies taking into account both nanoparticle collection efficiency and antibacterial effect. The aim of this work is to produce and evaluate novel silver/polyacrylonitrile (Ag/PAN) electrospun fibers deposited on a nonwoven substrate to be used as air filters to remove nanoparticles from the air and also showing antibacterial activity. In order to determine the optimum manufacturing conditions, the effects of several electrospinning process parameters were analyzed such as solution concentration, collector to needle distance, flow rate, voltage, and duration. Ag/PAN nanofibers were characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Fourier Transform Infra-Red spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and Scanning Electron Microscopy (SEM). In addition, filtration performances were determined by measuring the pressure drop and collection efficiency of sodium chloride (NaCl) aerosol particles (9 to 300 nm diameters) using Scanning Mobility Particle Sizers (SMPS). Filters with high filtration efficiency (≈100%) and high-quality factor (≈0.05 Pa-1) were obtained even adding different concentrations of Ag nanoparticles (AgNPs) to PAN nanofibers. The resultant Ag/PAN nanofibers showed excellent antibacterial activity against 104 CFU/mL E. coli bacteria.


Assuntos
Ar , Filtração/métodos , Membranas Artificiais , Nanofibras/química , Nanopartículas/química , Nanotecnologia/métodos , Resinas Acrílicas/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Nanofibras/ultraestrutura , Nanopartículas/ultraestrutura , Permeabilidade , Pressão , Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...