Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 202(4): E104-E120, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792913

RESUMO

AbstractMany animals lay their eggs in clusters. Eggs on the periphery of clusters can be at higher risk of mortality. We asked whether the most commonly occurring clutch sizes in pentatomid bugs could result from geometrical arrangements that maximize the proportion of eggs in the cluster's interior. Although the most common clutch sizes do not correspond with geometric optimality, stink bugs do tend to lay clusters of eggs in shapes that protect increasing proportions of their offspring as clutch sizes increase. We also considered whether ovariole number, an aspect of reproductive anatomy that may be a fixed trait across many pentatomids, could explain observed distributions of clutch sizes. The most common clutch sizes across many species correspond with multiples of ovariole number. However, there are species with the same number of ovarioles that lay clutches of widely varying size, among which multiples of ovariole number are not overrepresented. In pentatomid bugs, reproductive anatomy appears to be more important than egg mass geometry in determining clutch size uniformity. In addition, our analysis demonstrates that groups of animals with little variation in ovariole number may nonetheless lay a broad range of clutch shapes and sizes.


Assuntos
Tamanho da Ninhada , Animais , Fenótipo
2.
J Insect Physiol ; 133: 104273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34181983

RESUMO

Solar ultraviolet radiation (UV) can have a wide range of negative effects on animal fitness that take place not only during, but also after exposure (carryover effects). UV-induced carryover effects and potential adaptations to avoid or mitigate them are understudied in terrestrial animals, including arthropods and their potentially most vulnerable life stages. The spined soldier bug, Podisus maculiventris, increases the emergence of its eggs that are exposed to UV radiation by coating them in sunscreen-like pigmentation, but consequences of these conditions of embryonic development for nymphs and adults are unknown. We measured stink bug nymph survival, adult size and sex ratio following exposure of differently pigmented eggs across a range of UV intensities. Nymph survival to adulthood decreased with higher intensity of embryonic UV exposure and this carryover effect decreased with higher level of egg pigmentation, similar to previously observed effects on embryonic survival. Nymph development time, adult size and sex ratio were not affected by embryonic exposure to UV radiation nor by photoprotective egg pigmentation. This study is the first to demonstrate the potential for lethal carryover effects of UV radiation in terrestrial insects, highlighting the need for more studies of how this pervasive environmental stressor can affect fitness across life stages.


Assuntos
Heterópteros/efeitos da radiação , Pigmentação/fisiologia , Pigmentos Biológicos/fisiologia , Raios Ultravioleta/efeitos adversos , Animais , Heterópteros/crescimento & desenvolvimento , Longevidade , Ninfa/crescimento & desenvolvimento , Ninfa/efeitos da radiação , Óvulo/fisiologia , Óvulo/efeitos da radiação
3.
R Soc Open Sci ; 3(4): 150711, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27152215

RESUMO

Behavioural plasticity can drive the evolution of new traits in animals. In oviparous species, plasticity in oviposition behaviour could promote the evolution of new egg traits by exposing them to different selective pressures in novel oviposition sites. Individual females of the predatory stink bug Podisus maculiventris are able to selectively colour their eggs depending on leaf side, laying lightly pigmented eggs on leaf undersides and more pigmented eggs, which are more resistant to ultraviolet (UV) radiation damage, on leaf tops. Here, we propose an evolutionary scenario for P. maculiventris egg pigmentation and its selective application. We experimentally tested the influence of several ecological factors that: (i) could have favoured a behavioural shift towards laying eggs on leaf tops and thus the evolution of a UV-protective egg pigment (i.e. exploitation of enemy-reduced space or a thermoregulatory benefit) and (ii) could have subsequently led to the evolution of selective pigment application (i.e. camouflage or costly pigment production). We found evidence that a higher predation pressure on leaf undersides could have caused a shift in oviposition effort towards leaf tops. We also found the first evidence of an insect egg pigment providing a thermoregulatory advantage. Our study contributes to an understanding of how plasticity in oviposition behaviour could shape the responses of organisms to ecological factors affecting their reproductive success, spurring the evolution of new morphological traits.

4.
Curr Biol ; 25(15): 2007-11, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26212882

RESUMO

The color and patterning of animal eggs has important consequences for offspring survival. There are examples of between-species and polymorphic differences in egg coloration in birds and amphibians [1-3], as well as cases of birds and insects whose nutritional status or age can cause within-individual variation in egg pigmentation [4-6]. However, no studies to date have demonstrated that individual animals can selectively control the color of their eggs. Here, we show that individual females of the predatory stink bug Podisus maculiventris can control the pigmentation of their eggs during oviposition, as a response to environmental conditions. The color of egg masses produced by individual females can range from pale yellow to dark black/brown. Females tend to lay darker eggs, which are more resistant to UV radiation, on the upper surface of leaves where UV exposure is highest in nature. Conversely, they lay lighter eggs on the undersides of leaves. However, egg color is not determined by the intensity of UV radiation falling on the surface where they are laid. Rather, female stink bugs appear to use a visual assessment of oviposition substrate reflectance to determine egg color. Unexpectedly, biochemical analyses revealed that the egg pigment is not melanin, the most ubiquitous light-absorbing pigment in animals. Our study offers the first example of an animal able to selectively control the color of its eggs.


Assuntos
Heterópteros/fisiologia , Oviposição , Óvulo/fisiologia , Pigmentação , Animais , Cor , Meio Ambiente , Feminino , Folhas de Planta/fisiologia , Percepção Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...