Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Access Microbiol ; 4(9): acmi000455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415544

RESUMO

Increasing proton concentration in the environment represents a potentially lethal stress for single-celled microorganisms. To survive in an acidifying environment, the foodborne pathogen Listeria monocytogenes quickly activates the alternative sigma factor B (σB), resulting in upregulation of the general stress response (GSR) regulon. Activation of σB is regulated by the stressosome, a multi-protein sensory complex involved in stress detection and signal transduction. In this study, we used L. monocytogenes strains harbouring two stressosome mutants to investigate the role of this complex in triggering expression of known amino acid-based resistance mechanisms in response to low pH. We found that expression of glutamate decarboxylase (gadD3) and arginine and agmatine deiminases (arcA and aguA1, respectively) were upregulated upon acid shock (pH 5 for 15 min) in a stressosome-dependent manner. In contrast, transcription of the arg operons (argGH and argCJBDF), which encode enzymes for the l-arginine biosynthesis pathway, were upregulated upon acid shock in a stressosome-independent manner. Finally, we found that transcription of argR, which encodes a transcriptional regulator of the arc and arg operons, was largely unaffected by acidic shock. Thus, our findings suggest that the stressosome plays a role in activating amino acid-based pH homeostatic mechanisms in L. monocytogenes . Additionally, we show that genes encoding the l-arginine biosynthesis pathway are highly upregulated under acidic conditions, suggesting that intracellular arginine can help withstand environmental acidification in this pathogen.

2.
Commun Biol ; 5(1): 621, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760945

RESUMO

The stressosome is a pseudo-icosahedral megadalton bacterial stress-sensing protein complex consisting of several copies of two STAS-domain proteins, RsbR and RsbS, and the kinase RsbT. Upon perception of environmental stress multiple copies of RsbT are released from the surface of the stressosome. Free RsbT activates downstream proteins to elicit a global cellular response, such as the activation of the general stress response in Gram-positive bacteria. The molecular events triggering RsbT release from the stressosome surface remain poorly understood. Here we present the map of Listeria innocua RsbR1/RsbS complex at resolutions of 3.45 Å for the STAS domain core in icosahedral symmetry and of 3.87 Å for the STAS domain and N-terminal sensors in D2 symmetry, respectively. The structure reveals a conformational change in the STAS domain linked to phosphorylation in RsbR. Docking studies indicate that allosteric RsbT binding to the conformationally flexible N-terminal sensor domain of RsbR affects the affinity of RsbS towards RsbT. Our results bring to focus the molecular events within the stressosome complex and further our understanding of this ubiquitous signaling hub.


Assuntos
Bacillus subtilis , Fosfoproteínas , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Transdução de Sinais/fisiologia
3.
Appl Environ Microbiol ; 88(11): e0033022, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35583325

RESUMO

The alternative sigma factor B (σB) contributes to the stress tolerance of the foodborne pathogen Listeria monocytogenes by upregulating the general stress response. We previously showed that σB loss-of-function mutations arise frequently in strains of L. monocytogenes and suggested that mild stresses might favor the selection of such mutations. In this study, we performed in vitro evolution experiments (IVEE) where L. monocytogenes was allowed to evolve over 30 days at elevated (42°C) or lower (30°C) incubation temperatures. Isolates purified throughout the IVEE revealed the emergence of sigB operon mutations at 42°C. However, at 30°C, independent alleles in the agr locus arose, resulting in the inactivation of Agr quorum sensing. Colonies of both sigB mutants and agr mutants exhibited a greyer coloration on 7-days-old agar plates than those of the parental strain. Scanning electron microscopy revealed a more complex colony architecture in the wild type than in the mutant strains. sigB mutant strains outcompeted the parental strain at 42°C but not at 30°C, while agr mutant strains showed a small increase in competitive fitness at 30°C. Analysis of 40,080 L. monocytogenes publicly available genome sequences revealed a high occurrence rate of premature stop codons in both the sigB and agrCA loci. An analysis of a local L. monocytogenes strain collection revealed 5 out of 168 strains carrying agrCA alleles. Our results suggest that the loss of σB or Agr confer an increased competitive fitness in some specific conditions and this likely contributes to the emergence of these alleles in strains of L. monocytogenes. IMPORTANCE To withstand environmental aggressions, L. monocytogenes upregulates a large regulon through the action of the alternative sigma factor B (σB). However, σB becomes detrimental for L. monocytogenes growth under mild stresses, which confer a competitive advantage to σB loss-of-function alleles. Temperatures of 42°C, a mild stress, are often employed in mutagenesis protocols of L. monocytogenes and promote the emergence of σB loss-of-function alleles in the sigB operon. In contrast, lower temperatures of 30°C promote the emergence of Agr loss-of-function alleles, a cell-cell communication mechanism in L. monocytogenes. Our findings demonstrate that loss-of-function alleles emerge spontaneously in laboratory-grown strains. These alleles rise in the population as a consequence of the trade-off between growth and survival imposed by the activation of σB in L. monocytogenes. Additionally, our results demonstrate the importance of identifying unwanted hitchhiker mutations in newly constructed mutant strains.


Assuntos
Listeria monocytogenes , Fator sigma , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulon , Fator sigma/genética , Fator sigma/metabolismo , Temperatura
4.
PLoS Pathog ; 18(3): e1010213, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35275969

RESUMO

The general stress response (GSR) in Listeria monocytogenes plays a critical role in the survival of this pathogen in the host gastrointestinal tract. The GSR is regulated by the alternative sigma factor B (σB), whose role in protection against acid stress is well established. Here, we investigated the involvement of the stressosome, a sensory hub, in transducing low pH signals to induce the GSR. Mild acid shock (15 min at pH 5.0) activated σB and conferred protection against a subsequent lethal pH challenge. A mutant strain where the stressosome subunit RsbR1 was solely present retained the ability to induce σB activity at pH 5.0. The role of stressosome phosphorylation in signal transduction was investigated by mutating the putative phosphorylation sites in the core stressosome proteins RsbR1 (rsbR1-T175A, -T209A, -T241A) and RsbS (rsbS-S56A), or the stressosome kinase RsbT (rsbT-N49A). The rsbS S56A and rsbT N49A mutations abolished the response to low pH. The rsbR1-T209A and rsbR1-T241A mutants displayed constitutive σB activity. Mild acid shock upregulates invasion genes inlAB and stimulates epithelial cell invasion, effects that were abolished in mutants with an inactive or overactive stressosome. Overall, the results show that the stressosome is required for acid-induced activation of σB in L. monocytogenes. Furthermore, they show that RsbR1 can function independently of its paralogues and signal transduction requires RsbT-mediated phosphorylation of RsbS on S56 and RsbR1 on T209 but not T175. These insights shed light on the mechanisms of signal transduction that activate the GSR in L. monocytogenes in response to acidic environments, and highlight the role this sensory process in the early stages of the infectious cycle.


Assuntos
Listeria monocytogenes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/metabolismo , Fosforilação , Fator sigma/genética , Fator sigma/metabolismo , Transdução de Sinais/fisiologia
5.
J Bacteriol ; 204(1): e0048621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34694900

RESUMO

The survival of microbial cells under changing environmental conditions requires an efficient reprogramming of transcription, often mediated by alternative sigma factors. The Gram-positive human pathogen Listeria monocytogenes senses and responds to environmental stress mainly through the alternative sigma factor σB (SigB), which controls expression of the general stress response regulon. SigB activation is achieved through a complex series of phosphorylation/dephosphorylation events culminating in the release of SigB from its anti-sigma factor RsbW. At the top of the signal transduction pathway lies a large multiprotein complex known as the stressosome that is believed to act as a sensory hub for stresses. Following signal detection, stressosome proteins become phosphorylated. Resetting of the stressosome is hypothesized to be exerted by a putative phosphatase, RsbX, which presumably removes phosphate groups from stressosome proteins poststress. We addressed the role of the RsbX protein in modulating the activity of the stressosome and consequently regulating SigB activity in L. monocytogenes. We show that RsbX is required to reduce SigB activation levels under nonstress conditions and that it is required for appropriate SigB-mediated stress adaptation. A strain lacking RsbX displayed impaired motility and biofilm formation and also an increased survival at low pH. Our results could suggest that absence of RsbX alters the multiprotein composition of the stressosome without dramatically affecting its phosphorylation status. Overall, the data show that RsbX plays a critical role in modulating the signal transduction pathway by blocking SigB activation under nonstressed conditions. IMPORTANCE Pathogenic bacteria need to sense and respond to stresses to survive harsh environments and also to turn off the response when no longer facing stress. Activity of the stress sigma factor SigB in the human pathogen Listeria monocytogenes is controlled by a hierarchic system having a large stress-sensing multiprotein complex known as the stressosome at the top. Following stress exposure, proteins in the stressosome become phosphorylated, leading to SigB activation. We have studied the role of a putative phosphatase, RsbX, which is hypothesized to dephosphorylate stressosome proteins. RsbX is critical not only to switch off the stress response poststress but also to keep the activity of SigB low at nonstressed conditions to prevent unnecessary gene expression and save energy.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Listeria monocytogenes/metabolismo , Fator sigma/metabolismo , Estresse Fisiológico/fisiologia , Biofilmes , Listeria monocytogenes/genética , Mutação , Fator sigma/genética
6.
Appl Environ Microbiol ; 87(12): e0039721, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33811030

RESUMO

Listeria monocytogenes is a ubiquitous environmental bacterium and intracellular pathogen that responds to stress using predominantly the alternative sigma factor SigB. Stress is sensed by a multiprotein complex, the stressosome, extensively studied in bacteria grown in nutrient media. Following signal perception, the stressosome triggers a phosphorylation cascade that releases SigB from its anti-sigma factor. Whether the stressosome is activated during the intracellular infection is unknown. Here, we analyzed the subcellular distribution of stressosome proteins in L. monocytogenes located inside epithelial cells following their immunodetection in membrane and cytosolic fractions prepared from intracellular bacteria. Unlike bacteria in laboratory media, intracellular bacteria have a large proportion of the core stressosome protein RsbR1 associated with the membrane. However, another core protein, RsbS, is undetectable. Despite the absence of RsbS, a SigB-dependent reporter revealed that SigB activity increases gradually from early (1 h) to late (6 h) postinfection times. We also found that RsbR1 paralogues attenuate the intensity of the SigB response and that the miniprotein Prli42, reported to tether the stressosome to the membrane in response to oxidative stress, plays no role in associating RsbR1 to the membrane of intracellular bacteria. Altogether, these data indicate that, once inside host cells, the L. monocytogenes stressosome may adopt a unique configuration to sense stress and to activate SigB in the intracellular eukaryotic niche. IMPORTANCE The response to stress mediated by the alternative sigma factor SigB has been extensively characterized in Bacillus subtilis and Listeria monocytogenes. These bacteria sense stress using a supramacromolecular complex, the stressosome, which triggers a cascade that releases SigB from its anti-sigma factor. Despite the fact that many structural data on the complex are available and analyses have been performed in mutants lacking components of the stressosome or the signaling cascade, the integration of the stress signal and the dynamics of stressosome proteins following environmental changes remain poorly understood. Our study provides data at the protein level on essential stressosome components and SigB activity when L. monocytogenes, normally a saprophytic bacterium, adapts to an intracellular lifestyle. Our results support activation of the stressosome complex in intracellular bacteria. The apparent loss of the stressosome core protein RsbS in intracellular L. monocytogenes also challenges current models, favoring the idea of a unique stressosome architecture responding to intracellular host cues.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Listeria monocytogenes/metabolismo , Fator sigma/metabolismo , Estresse Fisiológico , Linhagem Celular , Proliferação de Células , Células Eucarióticas , Humanos
7.
Sci Rep ; 10(1): 20837, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257749

RESUMO

Listeria monocytogenes responds to environmental stress using a supra-macromolecular complex, the stressosome, to activate the stress sigma factor SigB. The stressosome structure, inferred from in vitro-assembled complexes, consists of the core proteins RsbR (here renamed RsbR1) and RsbS and, the kinase RsbT. The active complex is proposed to be tethered to the membrane and to support RsbR1/RsbS phosphorylation by RsbT and the subsequent release of RsbT following signal perception. Here, we show in actively-growing cells that L. monocytogenes RsbR1 and RsbS localize mostly in the cytosol in a fully phosphorylated state regardless of osmotic stress. RsbT however distributes between cytosolic and membrane-associated pools. The kinase activity of RsbT on RsbR1/RsbS and its requirement for maximal SigB activation in response to osmotic stress were demonstrated in vivo. Cytosolic RsbR1 interacts with RsbT, while this interaction diminishes at the membrane when RsbR1 paralogues (RsbR2, RsbR3 and RsbL) are present. Altogether, the data support a model in which phosphorylated RsbR1/RsbS may sustain basal SigB activity in unstressed cells, probably assuring a rapid increase in such activity in response to stress. Our findings also suggest that in vivo the active RsbR1-RsbS-RsbT complex forms only transiently and that membrane-associated RsbR1 paralogues could modulate its assembly.


Assuntos
Listeria monocytogenes/genética , Pressão Osmótica/fisiologia , Fator sigma/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Listeria monocytogenes/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Estresse Fisiológico/genética
8.
Genes (Basel) ; 11(11)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187233

RESUMO

Acidity is one of the principal physicochemical factors that influence the behavior of microorganisms in any environment, and their response to it often determines their ability to grow and survive. Preventing the growth and survival of pathogenic bacteria or, conversely, promoting the growth of bacteria that are useful (in biotechnology and food production, for example), might be improved considerably by a deeper understanding of the protective responses that these microorganisms deploy in the face of acid stress. In this review, we survey the molecular mechanisms used by two unrelated bacterial species in their response to low pH stress. We chose to focus on two well-studied bacteria, Escherichia coli (phylum Proteobacteria) and Listeria monocytogenes (phylum Firmicutes), that have both evolved to be able to survive in the mammalian gastrointestinal tract. We review the mechanisms that these species use to maintain a functional intracellular pH as well as the protective mechanisms that they deploy to prevent acid damage to macromolecules in the cells. We discuss the mechanisms used to sense acid in the environment and the regulatory processes that are activated when acid is encountered. We also highlight the specific challenges presented by organic acids. Common themes emerge from this comparison as well as unique strategies that each species uses to cope with acid stress. We highlight some of the important research questions that still need to be addressed in this fascinating field.


Assuntos
Escherichia coli/metabolismo , Listeria monocytogenes/metabolismo , Estresse Fisiológico/fisiologia , Ácidos , Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Concentração de Íons de Hidrogênio , Estresse Fisiológico/genética
9.
Front Microbiol ; 11: 1505, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733414

RESUMO

Sensing and responding to environmental cues is critical for the adaptability and success of the food-borne bacterial pathogen Listeria monocytogenes. A supramolecular multi-protein complex known as the stressosome, which acts as a stress sensing hub, is responsible for orchestrating the activation of a signal transduction pathway resulting in the activation of σB, the sigma factor that controls the general stress response (GSR). When σB is released from the anti-sigma factor RsbW, a rapid up-regulation of the large σB regulon, comprised of ≥ 300 genes, ensures that cells respond appropriately to the new environmental conditions. A diversity of stresses including low pH, high osmolarity, and blue light are known to be sensed by the stressosome, resulting in a generalized increase in stress resistance. Appropriate activation of the stressosome and deployment of σB are critical to fitness as there is a trade-off between growth and stress protection when the GSR is deployed. We review the recent developments in this field and describe an up-to-date model of how this sensory organelle might integrate environmental signals to produce an appropriate activation of the GSR. Some of the outstanding questions and challenges in this fascinating field are also discussed.

10.
J Bacteriol ; 202(9)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32094160

RESUMO

In Listeria monocytogenes, the full details of how stress signals are integrated into the σB regulatory pathway are not yet available. To help shed light on this question, we investigated a collection of transposon mutants that were predicted to have compromised activity of the alternative sigma factor B (σB). These mutants were tested for acid tolerance, a trait that is known to be under σB regulation, and they were found to display increased acid sensitivity, similar to a mutant lacking σB (ΔsigB). The transposon insertions were confirmed by whole-genome sequencing, but in each case, the strains were also found to carry a frameshift mutation in the sigB operon. The changes were predicted to result in premature stop codons, with negative consequences for σB activation, independently of the transposon location. Reduced σB activation in these mutants was confirmed. Growth measurements under conditions similar to those used during the construction of the transposon library revealed that the frameshifted sigB operon alleles conferred a growth advantage at higher temperatures, during late exponential phase. Mixed-culture experiments at 42°C demonstrated that the loss of σB activity allowed mutants to take over a population of parental bacteria. Together, our results suggest that mutations affecting σB activity can arise during laboratory culture because of the growth advantage conferred by these mutations under mild stress conditions. The data highlight the significant cost of stress protection in this foodborne pathogen and emphasize the need for whole-genome sequence analysis of newly constructed strains to confirm the expected genotype.IMPORTANCE In the present study, we investigated a collection of Listeria monocytogenes strains that all carried sigB operon mutations. The mutants all had reduced σB activity and were found to have a growth advantage under conditions of mild heat stress (42°C). In mixed cultures, these mutants outcompeted the wild type when mild heat stress was present but not at an optimal growth temperature. An analysis of 22,340 published L. monocytogenes genome sequences found a high rate of premature stop codons present in genes positively regulating σB activity. Together, these findings suggest that the occurrence of mutations that attenuate σB activity can be favored under conditions of mild stress, probably highlighting the burden on cellular resources that stems from deploying the general stress response.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/fisiologia , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Cinética , Listeria monocytogenes/química , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Mutação , Óperon , Fator sigma/genética , Estresse Fisiológico
11.
RNA Biol ; 16(10): 1424-1437, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31242083

RESUMO

The facultative intracellular pathogen Listeria monocytogenes can persist and grow in a diverse range of environmental conditions, both outside and within its mammalian host. The alternative sigma factor Sigma B (σB) plays an important role in this adaptability and is critical for the transition into the host. While some of the functions of the σB regulon in facilitating this transition are understood the role of σB-dependent small regulatory RNAs (sRNAs) remain poorly characterized. In this study, we focused on elucidating the function of Rli47, a σB-dependent sRNA that is highly induced in the intestine and in macrophages. Using a combination of in silico and in vivo approaches, a binding interaction was predicted with the Shine-Dalgarno region of the ilvA mRNA, which encodes threonine deaminase, an enzyme required for branched-chain amino acid biosynthesis. Both ilvA transcript levels and threonine deaminase activity were increased in a deletion mutant lacking the rli47 gene. The Δrli47 mutant displayed a shorter growth lag in isoleucine-depleted growth media relative to the wild-type, and a similar phenotype was also observed in a mutant lacking σB. The impact of the Δrli47 on the global transcription profile of the cell was investigated using RNA-seq, and a significant role for Rli47 in modulating amino acid metabolism was uncovered. Taken together, the data point to a model where Rli47 is responsible for specifically repressing isoleucine biosynthesis as a way to restrict growth under harsh conditions, potentially contributing to the survival of L. monocytogenes in niches both outside and within the mammalian host.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Isoleucina/biossíntese , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Pequeno RNA não Traduzido/genética , Fator sigma/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Perfilação da Expressão Gênica , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , RNA Mensageiro/genética , Pequeno RNA não Traduzido/química , Transcrição Gênica
12.
Microbiology (Reading) ; 165(8): 819-833, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31107205

RESUMO

In contrast to obligate intracellular pathogens that can remain in relatively stable host-associated environments, the soil-living bacterial pathogen Listeria monocytogenes has to sense and respond to physical and chemical cues in a variety of quite different niches. In particular, the bacterium has to survive the dramatic transition from its saprophytic existence to life within the host where nutritional stress, increased temperature, acidity, osmotic stress and the host defences present a new and challenging landscape. This review focuses on the σB and PrfA regulatory systems used by L. monocytogenes to sense the changing environment and implement survival mechanisms that help to overcome the disparate conditions within the host, but also to switch from a harmless saprophyte to an impressively effective pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/patogenicidade , Fatores de Terminação de Peptídeos/metabolismo , Fator sigma/metabolismo , Fatores de Virulência/genética , Virulência/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Transdução de Sinal Luminoso/genética , Listeria monocytogenes/genética , Listeriose , Fatores de Terminação de Peptídeos/genética , Fator sigma/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...