Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Physiol ; 15: 1395846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660539

RESUMO

Introduction: Diving decompression theory hypothesizes inflammatory processes as a source of micronuclei which could increase related risks. Therefore, we tested 10 healthy, male divers. They performed 6-8 dives with a maximum of two dives per day at depths ranging from 21 to 122 msw with CCR mixed gas diving. Methods: Post-dive VGE were counted by echocardiography. Saliva and urine samples were taken before and after each dive to evaluate inflammation: ROS production, lipid peroxidation (8-iso-PGF2), DNA damage (8-OH-dG), cytokines (TNF-α, IL-6, and neopterin). Results: VGE exhibits a progressive reduction followed by an increase (p < 0.0001) which parallels inflammation responses. Indeed, ROS, 8-iso-PGF2, IL-6 and neopterin increases from 0.19 ± 0.02 to 1.13 ± 0.09 µmol.min-1 (p < 0.001); 199.8 ± 55.9 to 632.7 ± 73.3 ng.mg-1 creatinine (p < 0.0001); 2.35 ± 0.54 to 19.5 ± 2.96 pg.mL-1 (p < 0.001); and 93.7 ± 11.2 to 299 ± 25.9 µmol·mol-1 creatinine (p = 0.005), respectively. The variation after each dive was held constant around 158.3% ± 6.9% (p = 0.021); 151.4% ± 5.7% (p < 0.0001); 176.3% ± 11.9% (p < 0.0001); and 160.1% ± 5.6% (p < 0.001), respectively. Discussion: When oxy-inflammation reaches a certain level, it exceeds hormetic coping mechanisms allowing second-generation micronuclei substantiated by an increase of VGE after an initial continuous decrease consistent with a depletion of "first generation" pre-existing micronuclei.

2.
Front Physiol ; 14: 1293752, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38321986

RESUMO

Objective: present transcutaneous carbon dioxide (CO2)-tcpCO2-monitors suffer from limitations which hamper their widespread use, and call for a new tcpCO2 measurement technique. However, the progress in this area is hindered by the lack of knowledge in transcutaneous CO2 diffusion. To address this knowledge gap, this study focuses on investigating the influence of skin temperature on two key skin properties: CO2 permeability and skin blood flow. Methods: a monocentric prospective exploratory study including 40 healthy adults was undertaken. Each subject experienced a 90 min visit split into five 18 min sessions at different skin temperatures-Non-Heated (NH), 35, 38, 41, and 44°C. At each temperature, custom sensors measured transcutaneous CO2 conductivity and exhalation rate at the arm and wrist, while Laser Doppler Flowmetry (LDF) assessed skin blood flow at the arm. Results: the three studied metrics sharply increased with rising skin temperature. Mean values increased from the NH situation up to 44°C from 4.03 up to 8.88 and from 2.94 up to 8.11 m·s-1 for skin conductivity, and from 80.4 up to 177.5 and from 58.7 up to 162.3 cm3·m-2·h-1 for exhalation rate at the arm and wrist, respectively. Likewise, skin blood flow increased elevenfold for the same temperature increase. Of note, all metrics already augmented significantly in the 35-38°C skin temperature range, which may be reached without active heating-i.e. only using a warm clothing. Conclusion: these results are extremely encouraging for the development of next-generation tcpCO2 sensors. Indeed, the moderate increase (× 2) in skin conductivity from NH to 44°C tends to indicate that heating the skin is not critical from a response time point of view, i.e. little to no skin heating would only result in a doubled sensor response time in the worst case, compared to a maximal heating at 44°C. Crucially, a skin temperature within the 35-38°C range already sharply increases the skin blood flow, suggesting that tcpCO2 correlates well with the arterial paCO2 even at such low skin temperatures. These two conclusions further strengthen the viability of non-heated tcpCO2 sensors, thereby paving the way for the development of wearable transcutaneous capnometers.

3.
J. physiol. biochem ; 69(2): 277-287, jun. 2013.
Artigo em Inglês | IBECS | ID: ibc-121975

RESUMO

We examined whether the improvement of impaired NO-dependent vasorelaxation by exercise training could be mediated through a BH4-dependent mechanism. Male spontaneously hypertensive rats (SHR, n = 20) and Wistar-Kyoto rats (WKY, n = 20) were trained (Tr) for 9 weeks on a treadmill and compared to age-matched sedentary animals (Sed). Endothelium-dependent vasorelaxation (EDV) was assessed with acetylcholine by measuring isometric tension in rings of femoral artery precontracted with 10−5 M phenylephrine. EDV was impaired in SHR-Sed as compared to WKY-Sed (p = 0.02). Training alone improved EDV in both WKY (p = 0.01) and SHR (p = 0.0001). Moreover, EDV was not different in trained SHR than in trained WKY (p = 0.934). Pretreatment of rings with L-NAME (50 ìM) cancelled the difference in ACh-induced relaxation between all groups, suggesting that NO pathway is involved in these differences. The presence of 10−5 M BH4 in the organ bath significantly improved EDV for sedentary SHR (p = 0.030) but not WKY group (p = 0.815). Exercise training turned the beneficial effect of BH4 on SHR to impairment of ACh-induced vasorelaxation in both SHR-Tr (p = 0.01) and WKY-Tr groups (p = 0.04). These results suggest that beneficial effect of exercise training on endothelial function is due partly to a BH4-dependent mechanism in established hypertension (AU)


Assuntos
Animais , Ratos , Biopterinas/farmacocinética , Fatores Relaxantes Dependentes do Endotélio/farmacocinética , Hipertensão/fisiopatologia , Endotélio/fisiopatologia , Ratos Endogâmicos SHR , Condicionamento Físico Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA