Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 2): 131110, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522694

RESUMO

Chitosan (CS) and sodium alginate (SA)-based biocomposites (CSA) were prepared with the in-situ generation of Calcium Carbonate (CSAX_Ca) through a simple, straightforward, economical, and eco-friendly procedure. Different drying conditions (X) were tested to achieve suitable structural and surface characteristics to enhance adsorption capacity: freeze-dried (L), vacuum-dried with methanol (M), and freeze-dried + vacuum-dried with methanol (LM). Temperature and adsorbent dosage effects on the adsorption capacity of Cu2+ or Pb2+ were examined. Results showed that the higher-yielding biocomposite (CSALM_Ca) exhibited rapid adsorption and good diffusion properties, achieving removal above 90 % within contaminant initial concentration ranges of 10-100 mg/L. At 35 °C, a pseudo-second-order kinetic and the Langmuir model effectively described kinetics and isotherms, revealing maximum adsorption (qe, max) of 429 mgCu2+/L and 1742 mgPb2+/g. Characterization through FTIR, XRD, and SEM of the as-prepared adsorbents confirmed the presence of CaCO3 in vaterite and calcite forms and the influence of drying conditions on the material morphology. Post-adsorption material characterization, in combination with adsorption findings, revealed chemisorption processes involving Ca2+ ion exchange for Cu2+ or Pb2+, resulting in surface-insoluble compounds. The best-performing material showed that after three reuse cycles, the removal of Cu2+ and Pb2+ decreased to 75 % and 62 %, respectively.


Assuntos
Alginatos , Carbonato de Cálcio , Quitosana , Cobre , Chumbo , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Cobre/química , Alginatos/química , Chumbo/química , Adsorção , Carbonato de Cálcio/química , Poluentes Químicos da Água/química , Cinética , Purificação da Água/métodos , Água/química , Propriedades de Superfície , Temperatura
2.
Int J Biol Macromol ; 253(Pt 2): 126416, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37633556

RESUMO

Nowadays, wastewater treatment is a critical concern, particularly regarding the removal of heavy metals through adsorption methods. Extensive research has been conducted on obtaining high-yield and environmentally friendly adsorbents. Natural polymer adsorbents especially have shown promise in ion and organic molecule adsorption. To enhance the practical applicability of adsorbents, the combination of biopolymers to form biocomposites is a promising alternative. In this study, adsorbents based on a 1:1 wt./wt. of chitosan (CS) and alginate (SA) were prepared. The influence of the regeneration route and drying conditions on the copper adsorption capacity was investigated, along with reaction parameters such as contact time, adsorbent particle size, and pH. The highest adsorption capacity was observed in the composite material obtained through a one-pot regeneration process and freeze-dried. The CSAR3L sample exhibited a remarkable adsorption capacity of 288 mg Cu(II)/g after 360 min at 25 °C. The synergistic effect between the CS and SA precursors was confirmed by analyzing the individual precursors and their mechanical mixture. The initial adsorption rates at pH 6 followed the order: CSAR3-L > Bk-CSR3L > Bk-SAR3L + Bk-CSR3L > Bk-SAR3L. The physicochemical and morphological properties of the materials were studied by FTIR, XRD, DLS, XPS, optical microscopy, EDS-SEM, elemental chemical analysis, and TGA-DTG. The utilization of different drying methods resulted in the formation of calcium carbonate crystalline phases in the as-prepared materials, thus creating substantial adsorption active sites. After the adsorption process, hydroxylated copper sulfate phases and a significant decrease in calcium concentration were observed, indicating that an ion exchange adsorption mechanism occurred. The analysis of adsorption kinetics and the shape of the adsorption isotherms, in agreement with the characterization results, suggested the presence of multiple active sites and the formation of a chemisorption monolayer.


Assuntos
Quitosana , Metais Pesados , Poluentes Químicos da Água , Cobre/química , Quitosana/química , Alginatos/química , Poluentes Químicos da Água/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...