Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297753

RESUMO

Peru is an important center of diversity for maize; its different cultivars have been adapted to distinct altitudes and water availability and possess an array of kernel colors (red, blue, and purple), which are highly appreciated by local populations. Specifically, Peruvian purple maize is a collection of native landraces selected and maintained by indigenous cultures due to its intense purple color in the seed, bract, and cob. This color is produced by anthocyanin pigments, which have gained interest due to their potential use in the food, agriculture, and pharmaceutical industry. It is generally accepted that the Peruvian purple maize originated from a single ancestral landrace 'Kculli', but it is not well understood. To study the origin of the Peruvian purple maize, we assembled the plastid genomes of the new cultivar 'INIA 601' with a high concentration of anthocyanins, comparing them with 27 cultivars/landraces of South America, 9 Z. mays subsp. parviglumis, and 5 partial genomes of Z. mays subsp. mexicana. Using these genomes, plus four other maize genomes and two outgroups from the NCBI database, we reconstructed the phylogenetic relationship of Z. mays. Our results suggest a polyphyletic origin of purple maize in South America and agree with a complex scenario of domestication with recurrent gene flow from wild relatives. Additionally, we identify 18 plastid positions that can be used as high-confidence genetic markers for further studies. Altogether, these plastid genomes constitute a valuable resource to study the evolution and domestication of Z. mays in South America.

2.
Genes (Basel) ; 13(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-35052453

RESUMO

Capirona (Calycophyllum spruceanum Benth.) belongs to subfamily Ixoroideae, one of the major lineages in the Rubiaceae family, and is an important timber tree. It originated in the Amazon Basin and has widespread distribution in Bolivia, Peru, Colombia, and Brazil. In this study, we obtained the first complete chloroplast (cp) genome of capirona from the department of Madre de Dios located in the Peruvian Amazon. High-quality genomic DNA was used to construct libraries. Pair-end clean reads were obtained by PE 150 library and the Illumina HiSeq 2500 platform. The complete cp genome of C. spruceanum has a 154,480 bp in length with typical quadripartite structure, containing a large single copy (LSC) region (84,813 bp) and a small single-copy (SSC) region (18,101 bp), separated by two inverted repeat (IR) regions (25,783 bp). The annotation of C. spruceanum cp genome predicted 87 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, 37 transfer RNA (tRNA) genes, and one pseudogene. A total of 41 simple sequence repeats (SSR) of this cp genome were divided into mononucleotides (29), dinucleotides (5), trinucleotides (3), and tetranucleotides (4). Most of these repeats were distributed in the noncoding regions. Whole chloroplast genome comparison with the other six Ixoroideae species revealed that the small single copy and large single copy regions showed more divergence than inverted regions. Finally, phylogenetic analyses resolved that C. spruceanum is a sister species to Emmenopterys henryi and confirms its position within the subfamily Ixoroideae. This study reports for the first time the genome organization, gene content, and structural features of the chloroplast genome of C. spruceanum, providing valuable information for genetic and evolutionary studies in the genus Calycophyllum and beyond.


Assuntos
Evolução Biológica , Proteínas de Cloroplastos/genética , Cloroplastos/genética , DNA de Cloroplastos/genética , Genoma de Cloroplastos , Polimorfismo de Nucleotídeo Único , Rubiaceae/genética , Proteínas de Cloroplastos/metabolismo , DNA de Cloroplastos/análise , Genômica , Anotação de Sequência Molecular , Filogenia , Rubiaceae/classificação , Rubiaceae/crescimento & desenvolvimento
3.
Mitochondrial DNA B Resour ; 6(9): 2781-2783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34514158

RESUMO

Here, we report the first complete chloroplast (cp) genome of Cinchona officinalis. This cp genome has a 156,984 bp in length with typical quadripartite structure, containing a large single copy (LSC) region (83,929 bp) and an 18,051 bp small single-copy (SSC) region, separated by two inverted repeat (IR) regions (27,502 bp). The total GC content was 37.75%. Quina tree chloroplast genome possesses 135 genes that consisted of 89 protein-coding genes, 37 tRNA, eight rRNA, and one pseudogene. Phylogenetic analysis showed that C. officinalis is sister to C. pubescens and sister to them is Isertia laevis; all belong to the Cinchonoideae sub-family.

4.
Plants (Basel) ; 10(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379271

RESUMO

Tomato susceptibility/resistance to stem canker disease caused by Alternaria alternata f. sp. lycopersici and its pathogenic factor AAL-toxin is determined by the presence of the Asc1 gene. Several cultivars of commercial tomato (Solanum lycopersicum var. lycopersicum, SLL) are reported to have a mutation in Asc1, resulting in their susceptibility to AAL-toxin. We evaluated 119 ancestral tomato accessions including S. pimpinellifolium (SP), S. lycopersicum var. cerasiforme (SLC) and S. lycopersicum var. lycopersicum "jitomate criollo" (SLJ) for AAL-toxin susceptibility. Three accessions, SP PER018805, SLC PER018894, and SLJ M5-3, were susceptible to AAL-toxin. SLC PER018894 and SLJ M5-3 had a two-nucleotide deletion (nt 854_855del) in Asc1 identical to that found in SLL cv. Aichi-first. Another mutation (nt 931_932insT) that may confer AAL-toxin susceptibility was identified in SP PER018805. In the phylogenetic tree based on the 18 COSII sequences, a clade (S3) is composed of SP, including the AAL-toxin susceptible PER018805, and SLC. AAL-toxin susceptible SLC PER018894 and SLJ M5-3 were in Clade S2 with SLL cultivars. As SLC is thought to be the ancestor of SLL, and SLJ is an intermediate tomato between SLC and SLL, Asc1s with/without the mutation seem to have been inherited throughout the history of tomato domestication and breeding.

5.
Sydowia ; 71: 141-245, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31975743

RESUMO

Thirteen new species are formally described: Cortinarius brunneocarpus from Pakistan, C. lilacinoarmillatus from India, Curvularia khuzestanica on Atriplex lentiformis from Iran, Gloeocantharellus neoechinosporus from China, Laboulbenia bernaliana on species of Apenes, Apristus, and Philophuga (Coleoptera, Carabidae) from Nicaragua and Panama, L. oioveliicola on Oiovelia machadoi (Hemiptera, Veliidae) from Brazil, L. termiticola on Macrotermes subhyalinus (Blattodea, Termitidae) from the DR Congo, Pluteus cutefractus from Slovenia, Rhizoglomus variabile from Peru, Russula phloginea from China, Stagonosporopsis flacciduvarum on Vitis vinifera from Italy, Strobilomyces huangshanensis from China, Uromyces klotzschianus on Rumex dentatus subsp. klotzschianus from Pakistan. The following new records are reported: Alternaria calendulae on Calendula officinalis from India; A. tenuissima on apple and quince fruits from Iran; Candelariella oleaginescens from Turkey; Didymella americana and D. calidophila on Vitis vinifera from Italy; Lasiodiplodia theobromae causing tip blight of Dianella tasmanica 'variegata' from India; Marasmiellus subpruinosus from Madeira, Portugal, new for Macaronesia and Africa; Mycena albidolilacea, M. tenuispinosa, and M. xantholeuca from Russia; Neonectria neomacrospora on Madhuca longifolia from India; Nothophoma quercina on Vitis vinifera from Italy; Plagiosphaera immersa on Urtica dioica from Austria; Rinodina sicula from Turkey; Sphaerosporium lignatile from Wisconsin, USA; and Verrucaria murina from Turkey. Multi-locus analysis of ITS, LSU, rpb1, tef1 sequences revealed that P. immersa, commonly classified within Gnomoniaceae (Diaporthales) or as Sordariomycetes incertae sedis, belongs to Magnaporthaceae (Magnaporthales). Analysis of a six-locus Ascomycota-wide dataset including SSU and LSU sequences of S. lignatile revealed that this species, currently in Ascomycota incertae sedis, belongs to Pyronemataceae (Pezizomycetes, Pezizales).

6.
Bio Protoc ; 8(7): e2796, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34286016

RESUMO

The Rapid Alkalinization Factor (RALF) is a plant hormone peptide that inhibits proton transport causing alkalinization of the extracellular media. To detect the alkalinization response elicited by RALF peptides in root cells, Arabidopsis seedlings are carefully transferred to a gel containing the pH-sensitive indicator bromocresol purple, treated with the peptide and photographed after 30 min. Herein the protocol is optimized for evaluation of exogenous treatment, described in detail and expected results are presented.

7.
J Biol Chem ; 293(6): 2159-2171, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29282286

RESUMO

Arabidopsis thaliana rapid alkalinization factor 1 (AtRALF1) is a small secreted peptide hormone that inhibits root growth by repressing cell expansion. Although it is known that AtRALF1 binds the plasma membrane receptor FERONIA and conveys its signals via phosphorylation, the AtRALF1 signaling pathway is largely unknown. Here, using a yeast two-hybrid system to search for AtRALF1-interacting proteins in Arabidopsis, we identified calmodulin-like protein 38 (CML38) as an AtRALF1-interacting partner. We also found that CML38 and AtRALF1 are both secreted proteins that physically interact in a Ca2+- and pH-dependent manner. CML38-knockout mutants generated via T-DNA insertion were insensitive to AtRALF1, and simultaneous treatment with both AtRALF1 and CML38 proteins restored sensitivity in these mutants. Hybrid plants lacking CML38 and having high accumulation of the AtRALF1 peptide did not exhibit the characteristic short-root phenotype caused by AtRALF1 overexpression. Although CML38 was essential for AtRALF1-mediated root inhibition, it appeared not to have an effect on the AtRALF1-induced alkalinization response. Moreover, acridinium-labeling of AtRALF1 indicated that the binding of AtRALF1 to intact roots is CML38-dependent. In summary, we describe a new component of the AtRALF1 response pathway. The new component is a calmodulin-like protein that binds AtRALF1, is essential for root growth inhibition, and has no role in AtRALF1 alkalinization.


Assuntos
Proteínas de Arabidopsis/fisiologia , Calmodulina/fisiologia , Hormônios Peptídicos/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Cálcio/farmacologia , Calmodulina/metabolismo , Concentração de Íons de Hidrogênio , Hormônios Peptídicos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Ligação Proteica/efeitos dos fármacos
9.
PLoS Genet ; 13(10): e1007053, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29028796

RESUMO

The rapid alkalinization factor (RALF) peptide negatively regulates cell expansion, and an antagonistic relationship has been demonstrated between AtRALF1, a root-specific RALF isoform in Arabidopsis, and brassinosteroids (BRs). An evaluation of the response of BR signaling mutants to AtRALF1 revealed that BRI1-associated receptor kinase1 (bak1) mutants are insensitive to AtRALF1 root growth inhibition activity. BAK1 was essential for the induction of AtRALF1-responsive genes but showed no effect on the mobilization of Ca2+ and alkalinization responses. Homozygous plants accumulating AtRALF1 and lacking the BAK1 gene did not exhibit the characteristic semi-dwarf phenotype of AtRALF1-overexpressors. Biochemical evidence indicates that AtRALF1 and BAK1 physically interact with a Kd of 4.6 µM and acridinium-labeled AtRALF1 was used to demonstrate that part of the specific binding of AtRALF1 to intact seedlings and to a microsomal fraction derived from the roots of Arabidopsis plants is BAK1-dependent. Moreover, AtRALF1 induces an increase in BAK1 phosphorylation, suggesting that the binding of AtRALF1 to BAK1 is functional. These findings show that BAK1 contains an additional AtRALF1 binding site, indicating that this protein may be part of a AtRALF1-containing complex as a co-receptor, and it is required for the negative regulation of cell expansion.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hormônios Peptídicos/genética , Raízes de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Transporte/genética , Ciclo Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica de Plantas/genética , Fenótipo , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais/genética
10.
J Exp Bot ; 65(8): 2219-30, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24620000

RESUMO

Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide's mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF's mechanism of action could be to interfere with the BR signalling pathway.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Arabidopsis/citologia , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Inativação Gênica , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase , Esteroides Heterocíclicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...