Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 165: 115216, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37544282

RESUMO

BACKGROUND: Liver fibrosis is a global health problem, and studying its development provides important information to address its treatment. Here, we characterized the effects of an adenosine compound (IFC-305) on preventing fibrosis and liver inflammation. METHODS: We studied the impact of IFC-305 on a carbon tetrachloride-induced liver fibrosis model in Wistar male rats at 4, 6, and 8 weeks. The effects were characterized by liver tissue histology, macrophages identification by flow cytometry with CD163+/CD11b/c+ antibodies, hepatic and plasmatic cytokine levels employing MILLIPLEX MAP and ELISA, Col1a1 and Il6 gene expression by RTqPCR, lipoperoxidation by TBARS reaction, and reactive oxygen species using 2'-7'dichlorofluorescin diacetate. RESULTS: CCl4-induced liver fibrosis and inflammation were significantly reduced in rats treated with IFC-305 at 6 and 8 weeks. In addition, we observed diminished expression of Col1a1; a decrease in the inflammatory cytokines IL-1ß, IL-6, MCP-1, TNF-α, and IL-4 a; reduction in inflammatory macrophages; inhibition of lipoperoxidation; and ROS production in Kupffer cells. CONCLUSION: This study showed that IFC-305 can inhibit liver fibrosis establishment by regulating the immune response during CCl4-induced damage. The immunomodulatory action of IFC-305 supports its use as a potential therapeutic strategy for preventing liver fibrosis.


Assuntos
Inflamação , Fígado , Ratos , Masculino , Animais , Ratos Wistar , Fibrose , Inflamação/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Citocinas/metabolismo , Tetracloreto de Carbono/toxicidade , Adenosina
2.
Sci Rep ; 10(1): 7822, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385352

RESUMO

A basic question linked to differential patterns of gene expression is how cells reach different fates despite using the same DNA template. Since 5-hydroxymethylcytosine (5hmC) emerged as an intermediate metabolite in active DNA demethylation, there have been increasing efforts to elucidate its function as a stable modification of the genome, including a role in establishing such tissue-specific patterns of expression. Recently we described TET1-mediated enrichment of 5hmC on the promoter region of the master regulator of hepatocyte identity, HNF4A, which precedes differentiation of liver adult progenitor cells in vitro. Here, we studied the genome-wide distribution of 5hmC at early in vitro differentiation of human hepatocyte-like cells. We found a global increase in 5hmC as well as a drop in 5-methylcytosine after one week of in vitro differentiation from bipotent progenitors, at a time when the liver transcript program is already established. 5hmC was overall higher at the bodies of overexpressed genes. Furthermore, by modifying the metabolic environment, an adenosine derivative prevents 5hmC enrichment and impairs the acquisition of hepatic identity markers. These results suggest that 5hmC could be a marker of cell identity, as well as a useful biomarker in conditions associated with cell de-differentiation such as liver malignancies.


Assuntos
5-Metilcitosina/análogos & derivados , Diferenciação Celular/genética , Metilação de DNA/genética , Fator 4 Nuclear de Hepatócito/genética , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , 5-Metilcitosina/metabolismo , Desmetilação do DNA , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Hepatócitos/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , Células-Tronco/metabolismo
3.
Int Immunopharmacol ; 54: 12-23, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29100033

RESUMO

Cirrhosis is a liver pathology originated by hepatocytes, Kupffer and hepatic stellate cells interactions and transformations. This pathology is associated with inflammation and fibrosis, originated by molecular signals secreted by immunological and parenchymal cells, such as cytokines and chemokines, like IL-1ß, IL-6, TNF-α or MCP-1, driven by Kupffer cells signals. As part of inflammation resolution, the same activated Kupffer cells contribute to anti-inflammatory effects with IL-10 and MMP-9 secretion. In a Wistar rat model, cirrhosis induced with CCl4 is characterized by increased inflammatory cytokines, IL-6, IL-1ß, MCP-1, and TNF-α, in plasma and liver tissue. The IFC-305 compound, an adenosine derivative salt, reverses the cirrhosis in this model, suggesting that immune mechanisms related to inflammation should be explored. The IFC-305 reduced inflammatory cytokines, supporting the anti-inflammatory effects induced by the elevation of IL-10, as well as the reduction of M1 inflammatory macrophages (CD11b/c+/CD163+) and the increase of M2 anti-inflammatory macrophages (HIS36+/CD11b+), measured by flow cytometry. Furthermore, the IFC-305 enhances the metabolic activity of arginase and moderates the inducible nitric oxide synthetase, evaluated through biochemical and immunohistochemical methods. These results contribute to understand the function of the IFC-305, which modulates the immune response in the Wistar rat model of CCl4-induced cirrhosis and support the hepatic protective action through an anti-inflammatory effect, mainly mediated by Kupffer cells.


Assuntos
Adenosina/análogos & derivados , Anti-Inflamatórios/uso terapêutico , Fibrose/tratamento farmacológico , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Adenosina/uso terapêutico , Animais , Arginase/metabolismo , Antígeno CD11b/metabolismo , Antígeno CD11c/metabolismo , Tetracloreto de Carbono , Diferenciação Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose/induzido quimicamente , Fibrose/imunologia , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Masculino , Óxido Nítrico Sintase Tipo II , Ratos , Ratos Wistar , Equilíbrio Th1-Th2
4.
J Cell Biochem ; 119(1): 401-413, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28590037

RESUMO

The pathological characteristic of cirrhosis is scarring which results in a structurally distorted and dysfunctional liver. Previously, we demonstrated that Col1a1 and Pparg genes are deregulated in CCl4 -induced cirrhosis but their normal expression levels are recovered upon treatment with IFC-305, an adenosine derivative. We observed that adenosine was able to modulate S-adenosylmethionine-dependent trans-methylation reactions, and recently, we found that IFC-305 modulates HDAC3 expression. Here, we investigated whether epigenetic mechanisms, involving DNA methylation processes and histone acetylation, could explain the re-establishment of gene expression mediated by IFC-305 in cirrhosis. Therefore, Wistar rats were CCl4 treated and a sub-group received IFC-305 to reverse fibrosis. Global changes in DNA methylation, 5-hydroxymethylation, and histone H4 acetylation were observed after treatment with IFC-305. In particular, during cirrhosis, the Pparg gene promoter is depleted of histone H4 acetylation, whereas IFC-305 administration restores normal histone acetylation levels which correlates with an increase of Pparg transcript and protein levels. In contrast, the promoter of Col1a1 gene is hypomethylated during cirrhosis but gains DNA methylation upon treatment with IFC-305 which correlates with a reduction of Col1a1 transcript and protein levels. Our results suggest a model in which cirrhosis results in a general loss of permissive chromatin histone marks which triggers the repression of the Pparg gene and the upregulation of the Col1a1 gene. Treatment with IFC-305 restores epigenetic modifications globally and specifically at the promoters of Pparg and Col1a1 genes. These results reveal one of the mechanisms of action of IFC-305 and suggest a possible therapeutic function in cirrhosis. J. Cell. Biochem. 119: 401-413, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Adenosina/análogos & derivados , Intoxicação por Tetracloreto de Carbono/tratamento farmacológico , Epigênese Genética/efeitos dos fármacos , Cirrose Hepática Experimental/tratamento farmacológico , Adenosina/farmacologia , Animais , Intoxicação por Tetracloreto de Carbono/genética , Intoxicação por Tetracloreto de Carbono/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Ratos , Ratos Wistar
5.
J Int Med Res ; 45(6): 1879-1891, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27503947

RESUMO

Objective To evaluate the relationship between pro-atherogenic biomarkers and epicardial adipose tissue (EAT) thickness in patients with cardiovascular risk factors. Methods Plasma nitric oxide (NO), soluble intercellular adhesion molecule-1 and malondialdehyde (MDA) levels, EAT thickness, flow-mediated dilation (FMD) and carotid intima media thickness (CIMT) were determined in patients aged >18 years who were referred for echocardiography for heart ischemia or non-ischemic diseases. Cardiovascular risk factors (Framingham score [FS] ≥ 20) were weighted. Results Hypertension, dyslipidaemia and type 2 diabetes mellitus were prevalent (≥55% of 40 patients). Patients with FS ≥ 20 ( n = 21) showed significantly higher EAT and CIMT values. Globally, MDA, CIMT, age, waist circumference, high-density lipoprotein cholesterol (HDL-C) and FS were associated with EAT thickness. EAT was significantly associated with NO in patients with FS ≥ 20. Significant differences in EAT thickness were found between patients stratified by NO value, FMD, age, smoking status, dyslipidaemia, type 2 diabetes mellitus and FS. An EAT-associated atherogenic risk (CIMT ≥ 1 mm) model was statistically significant when MDA and type 2 diabetes mellitus were included. Conclusion EAT thickness was associated with MDA, CIMT, age, waist circumference, HDL-C and FS globally, but with NO only in patients with FS≥20. EAT may be used to identify vascular damage stage, possibly influenced by MDA and type 2 diabetes mellitus.


Assuntos
Tecido Adiposo/patologia , Aterosclerose/patologia , Espessura Intima-Media Carotídea , Pericárdio/patologia , Tecido Adiposo/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Aterosclerose/diagnóstico por imagem , Biomarcadores/metabolismo , Demografia , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Pericárdio/diagnóstico por imagem , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...