Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38671892

RESUMO

Peroxiredoxins (Prxs) and glutathione peroxidases (GPxs) are the main enzymes of the thiol-dependent antioxidant systems responsible for reducing the H2O2 produced via aerobic metabolism or parasitic organisms by the host organism. These antioxidant systems maintain a proper redox state in cells. The cysticerci of Taenia crassiceps tolerate millimolar concentrations of this oxidant. To understand the role played by Prxs in this cestode, two genes for Prxs, identified in the genome of Taenia solium (TsPrx1 and TsPrx3), were cloned. The sequence of the proteins suggests that both isoforms belong to the class of typical Prxs 2-Cys. In addition, TsPrx3 harbors a mitochondrial localization signal peptide and two motifs (-GGLG- and -YP-) associated with overoxidation. Our kinetic characterization assigns them as thioredoxin peroxidases (TPxs). While TsPrx1 and TsPrx3 exhibit the same catalytic efficiency, thioredoxin-glutathione reductase from T. crassiceps (TcTGR) was five and eight times higher. Additionally, the latter demonstrated a lower affinity (>30-fold) for H2O2 in comparison with TsPrx1 and TsPrx3. The TcTGR contains a Sec residue in its C-terminal, which confers additional peroxidase activity. The aforementioned aspect implies that TsPrx1 and TsPrx3 are catalytically active at low H2O2 concentrations, and the TcTGR acts at high H2O2 concentrations. These results may explain why the T. crassiceps cysticerci can tolerate high H2O2 concentrations.

2.
Exp Parasitol ; 239: 108319, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35777452

RESUMO

Curcumin, a curcuminoid present in the rhizome of the plant Curcuma longa has multiple pharmacological effects including anticarcinogenic and anti-inflammatory properties. This work evaluates the anthelmintic effect of the curcumin molecule (98% pure) on Taenia crassiceps cysticerci viability in vitro. Cysticerci incubated in the presence of increasing concentrations of curcumin showed a dose-dependent mortality correlated with a significant increase in the production of reactive oxygen species and a partial inhibition of thioredoxin-glutathione reductase, the only disulfide reductase present in these parasites. At 500 µM curcumin, a 100% of cysticerci lethality was obtained after 2 h of treatment. These results suggest the curcumin-induced oxidative stress could be in the origin of the anthelminthic effect of curcumin. Mice with cysticerci were injected intraperitoneally with 20, 40, or 60 mM curcumin daily for 30 days. A decrease in the burden of cysticerci (46%) was observed with a 60 mM dose of curcumin, supporting this compound as a potential anthelmintic drug.


Assuntos
Anti-Helmínticos , Curcumina , Cisticercose , Taenia , Animais , Anti-Helmínticos/farmacologia , Curcumina/farmacologia , Cisticercose/tratamento farmacológico , Cysticercus , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo
3.
Antioxidants (Basel) ; 11(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35739999

RESUMO

During the evolution of the Earth, the increase in the atmospheric concentration of oxygen gave rise to the development of organisms with aerobic metabolism, which utilized this molecule as the ultimate electron acceptor, whereas other organisms maintained an anaerobic metabolism. Platyhelminthes exhibit both aerobic and anaerobic metabolism depending on the availability of oxygen in their environment and/or due to differential oxygen tensions during certain stages of their life cycle. As these organisms do not have a circulatory system, gas exchange occurs by the passive diffusion through their body wall. Consequently, the flatworms developed several adaptations related to the oxygen gradient that is established between the aerobic tegument and the cellular parenchyma that is mostly anaerobic. Because of the aerobic metabolism, hydrogen peroxide (H2O2) is produced in abundance. Catalase usually scavenges H2O2 in mammals; however, this enzyme is absent in parasitic platyhelminths. Thus, the architecture of the antioxidant systems is different, depending primarily on the superoxide dismutase, glutathione peroxidase, and peroxiredoxin enzymes represented mainly in the tegument. Here, we discuss the adaptations that parasitic flatworms have developed to be able to transit from the different metabolic conditions to those they are exposed to during their life cycle.

4.
Int J Biol Macromol ; 165(Pt A): 249-267, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32961182

RESUMO

The thiol-based glutathione reductase (GR) and thioredoxin reductase (TrxR) are the major antioxidant enzymes present in various organisms that maintain the internal redox homeostasis. The thioredoxin system has attracted the attention of researchers from diverse investigation fields of biological sciences. Apart from redox regulation, this system is thought to be the major regulator of various biological processes including transcription, apoptosis, etc. Identification and physicobiochemical characterization of the reductase enzyme i.e. Thioredoxin reductase (TrxR) revealed the potency of it to become a promising target. Novel therapeutic interventions by selective targeting of TrxR in parasitic organisms as well as in the cancer cells have now become a usual treatment approach. However, different isoforms and their variation in the penultimate amino acid (Selenocysteine or cysteine) present in the catalytic site of the enzyme have made this enzyme to respond differently towards various drugs and synthetic and/or natural compounds. Therefore, the present article seeks to highlight the importance and the detailed molecular mechanism, functional perspective underlying the TrxR inhibition in various parasitic protozoans, helminthes as well as in cancer cells for devising suitable anti-TrxR candidates.


Assuntos
Antineoplásicos , Antioxidantes , Antiparasitários , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos , Proteínas de Helminto/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antiparasitários/química , Antiparasitários/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Proteínas de Helminto/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas de Protozoários/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
6.
PLoS One ; 14(7): e0220098, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329647

RESUMO

Curcuma is a traditional ingredient of some Eastern cuisines, and the spice is heralded for its antitumoral and antiparasitic properties. In this report, we examine the effect of the curcuminoides which include curcumin, demethoxycurcumin (DMC) and bis-demethoxycurcumin (BDMC), as well as curcumin degradation products on thioredoxin glutathione reductase from Taenia crassiceps cysticerci Results revealed that both DMC and BDMC were inhibitors of TGR activity in the micromolar concentration range. By contrast, the inhibitory ability of curcumin was a time-dependent process. Kinetic and spectroscopical evidence suggests that an intermediary compound of curcumin oxidation, probably spiroepoxide, is responsible. Preincubation of curcumin in the presence of NADPH, but not glutathione disulfide (GSSG), resulted in the loss of its inhibitory ability, suggesting a reductive stabilizing effect. Similarly, preincubation of curcumin with sulfhydryl compounds fully protected the enzyme from inhibition. Degradation products were tested for their inhibitory potential, and 4-vinylguaiacol was the best inhibitor (IC50 = 12.9 µM), followed by feruloylmethane (IC50 = 122 µM), vanillin (IC50 = 127 µM), and ferulic aldehyde (IC50 = 180 µM). The acid derivatives ferulic acid (IC50 = 465 µM) and vanillic acid (IC50 = 657 µM) were poor inhibitors. On the other hand, results from docking analysis revealed a common binding site on the enzyme for all the compounds, albeit interacting with different amino acid residues. Dissociation constants obtained from the docking were in accord with the inhibitory efficiency of the curcumin degradation products.


Assuntos
Anti-Helmínticos/farmacologia , Curcumina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Proteínas de Helminto/antagonistas & inibidores , Complexos Multienzimáticos/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Taenia/enzimologia , Animais , Anti-Helmínticos/química , Sítios de Ligação , Curcumina/farmacologia , Inibidores Enzimáticos/química , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Simulação de Acoplamento Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/metabolismo , Ligação Proteica , Taenia/efeitos dos fármacos
7.
Enzyme Res ; 2018: 3215462, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254758

RESUMO

A kinetic study of thioredoxin-glutathione reductase (TGR) from Taenia crassiceps metacestode (cysticerci) was carried out. The results obtained from both initial velocity and product inhibition experiments suggest the enzyme follows a two-site ping-pong bi bi kinetic mechanism, in which both substrates and products are bound in rapid equilibrium fashion. The substrate GSSG exerts inhibition at moderate or high concentrations, which is concomitant with the observation of hysteretic-like progress curves. The effect of NADPH on the apparent hysteretic behavior of TGR was also studied. At low concentrations of NADPH in the presence of moderate concentrations of GSSG, atypical time progress curves were observed, consisting of an initial burst-like stage, followed by a lag whose amplitude and duration depended on the concentration of both NADPH and GSSG. Based on all the kinetic and structural evidence available on TGR, a mechanism-based model was developed. The model assumes a noncompetitive mode of inhibition by GSSG in which the disulfide behaves as an affinity label-like reagent through its binding and reduction at an alternative site, leading the enzyme into an inactive state. The critical points of the model are the persistence of residual GSSG reductase activity in the inhibited GSSG-enzyme complexes and the regeneration of the active form of the enzyme by GSH. Hence, the hysteretic-like progress curves of GSSG reduction by TGR are the result of a continuous competition between GSH and GSSG for driving the enzyme into active or inactive states, respectively. By using an arbitrary but consistent set of rate constants, the experimental full progress curves were successfully reproduced in silico.

8.
PLoS One ; 12(8): e0182499, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28787021

RESUMO

A search of the disulfide reductase activities expressed in the adult stage of the free-living platyhelminth Dugesia dorotocephala was carried out. Using GSSG or DTNB as substrates, it was possible to obtain a purified fraction containing both GSSG and DTNB reductase activities. Through the purification procedure, both disulfide reductase activities were obtained in the same chromatographic peak. By mass spectrometry analysis of peptide fragments obtained after tryptic digestion of the purified fraction, the presence of glutathione reductase (GR), thioredoxin-glutathione reductase (TGR), and a putative thioredoxin reductase (TrxR) was detected. Using the gold compound auranofin to selectively inhibit the GSSG reductase activity of TGR, it was found that barely 5% of the total GR activity in the D. dorotocephala extract can be assigned to GR. Such strategy did allow us to determine the kinetic parameters for both GR and TGR. Although It was not possible to discriminate DTNB reductase activity due to TrxR from that of TGR, a chromatofocusing experiment with a D. dorotocephala extract resulted in the obtention of a minor protein fraction enriched in TrxR, strongly suggesting its presence as a functional protein. Thus, unlike its parasitic counterparts, in the free-living platyhelminth lineage the three disulfide reductases are present as functional proteins, albeit TGR is still the major disulfide reductase involved in the reduction of both Trx and GSSG. This fact suggests the development of TGR in parasitic flatworms was not linked to a parasitic mode of life.


Assuntos
Regulação Enzimológica da Expressão Gênica , Oxirredutases/metabolismo , Platelmintos/enzimologia , Platelmintos/genética , Animais , Cinética
9.
Molecules ; 22(2)2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28208651

RESUMO

The use of oxygen as the final electron acceptor in aerobic organisms results in an improvement in the energy metabolism. However, as a byproduct of the aerobic metabolism, reactive oxygen species are produced, leaving to the potential risk of an oxidative stress. To contend with such harmful compounds, living organisms have evolved antioxidant strategies. In this sense, the thiol-dependent antioxidant defense systems play a central role. In all cases, cysteine constitutes the major building block on which such systems are constructed, being present in redox substrates such as glutathione, thioredoxin, and trypanothione, as well as at the catalytic site of a variety of reductases and peroxidases. In some cases, the related selenocysteine was incorporated at selected proteins. In invertebrate parasites, antioxidant systems have evolved in a diversity of both substrates and enzymes, representing a potential area in the design of anti-parasite strategies. The present review focus on the organization of the thiol-based antioxidant systems in invertebrate parasites. Differences between these taxa and its final mammal host is stressed. An understanding of the antioxidant defense mechanisms in this kind of parasites, as well as their interactions with the specific host is crucial in the design of drugs targeting these organisms.


Assuntos
Antioxidantes/metabolismo , Infecções por Protozoários/parasitologia , Compostos de Sulfidrila/metabolismo , Animais , Entamoeba/imunologia , Entamoeba/metabolismo , Interações Hospedeiro-Parasita , Humanos , Imunidade Inata , Plasmodium/imunologia , Plasmodium/metabolismo , Infecções por Protozoários/imunologia , Schistosoma/imunologia , Schistosoma/metabolismo , Taenia/imunologia , Taenia/metabolismo
10.
Vet Rec Open ; 2(1): e000103, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26392902

RESUMO

Arthrobotrys musiformis is a nematophagous fungus with potential for the biological control of Haemonchus contortus larvae. This study aimed to identify and demonstrate the proteolytic activity of extracellular products from A musiformis cultured in a liquid medium against H contortus infective larvae. A musiformis was cultured on a solid medium and further grown in a liquid medium, which was then processed through ion exchange and hydrophobic interaction chromatography. The proteolytic activity of the purified fraction was assayed with either gelatin or bovine serum albumin as substrate. Optimum proteolytic activity was observed at pH 8 and a temperature of 37°C. Results obtained with specific inhibitors suggest the enzyme belongs to the serine-dependent protease family. The purified fraction concentrate from A musiformis was tested against H contortus infective larvae. A time-dependent effect was observed with 77 per cent immobility after 48 hours incubation, with alteration of the sheath. It is concluded that A musiformis is a potential candidate for biological control because of its resistant structures and also because of its excretion of extracellular products such as proteases. The present study contributes to the identification of one of the in vitro mechanisms of action of A musiformis, namely the extracellular production of proteases against H contortus infective larvae. More investigations should be undertaken into how these products could be used to decrease the nematode population in sheep flocks under field conditions, thereby improving animal health while simultaneously diminishing the human and environmental impact of chemical-based drugs.

11.
Biochim Biophys Acta ; 1850(1): 107-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25459514

RESUMO

BACKGROUND: STARD1 transports cholesterol into mitochondria of acutely regulated steroidogenic tissue. It has been suggested that STARD3 transports cholesterol in the human placenta, which does not express STARD1. STARD1 is proteolytically activated into a 30-kDa protein. However, the role of proteases in STARD3 modification in the human placenta has not been studied. METHODS: Progesterone determination and Western blot using anti-STARD3 antibodies showed that mitochondrial proteases cleave STARD3 into a 28-kDa fragment that stimulates progesterone synthesis in isolated syncytiotrophoblast mitochondria. Protease inhibitors decrease STARD3 transformation and steroidogenesis. RESULTS: STARD3 remained tightly bound to isolated syncytiotrophoblast mitochondria. Simultaneous to the increase in progesterone synthesis, STARD3 was proteolytically processed into four proteins, of which a 28-kDa protein was the most abundant. This protein stimulated mitochondrial progesterone production similarly to truncated-STARD3. Maximum levels of protease activity were observed at pH7.5 and were sensitive to 1,10-phenanthroline, which inhibited steroidogenesis and STARD3 proteolytic cleavage. Addition of 22(R)-hydroxycholesterol increased progesterone synthesis, even in the presence of 1,10-phenanthroline, suggesting that proteolytic products might be involved in mitochondrial cholesterol transport. CONCLUSION: Metalloproteases from human placental mitochondria are involved in steroidogenesis through the proteolytic activation of STARD3. 1,10-Phenanthroline inhibits STARD3 proteolytic cleavage. The 28-kDa protein and the amino terminal truncated-STARD3 stimulate steroidogenesis in a comparable rate, suggesting that both proteins share similar properties, probably the START domain that is involved in cholesterol binding. GENERAL SIGNIFICANCE: Mitochondrial proteases are involved in syncytiotrophoblast-cell steroidogenesis regulation. Understanding STARD3 activation and its role in progesterone synthesis is crucial to getting insight into its action mechanism in healthy and diseased syncytiotrophoblast cells.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Peptídeo Hidrolases/metabolismo , Progesterona/biossíntese , Trofoblastos/metabolismo , Western Blotting , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Concentração de Íons de Hidrogênio , Mitocôndrias/metabolismo , Consumo de Oxigênio , Fenantrolinas/farmacologia , Placenta/citologia , Placenta/metabolismo , Gravidez , Inibidores de Proteases/farmacologia , Proteólise/efeitos dos fármacos , Espectrometria de Massas em Tandem
12.
Parasitol Int ; 60(2): 156-60, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21295157

RESUMO

Thioredoxin-glutathione reductase (TGR) was purified from the adult stage of the liver fluke Fasciola hepatica. At 38° C and pH 7.8, specific activity values were 10.2U mg(-1) and 64.5U mg(-1), with DTNB or GSSG as substrates, respectively. Under the same conditions, apparent Km values were 46±8 µM (DTNB) and 30 ± 5 µM (GSSG). The enzyme was also able to catalyze thiol/disulfide exchange reactions. A subunit Mr of 61,000 was obtained. Like the homologous enzyme from the tapeworms, a lag time was observed in the enzyme assays at moderate or high concentrations of the substrate GSSG. The hysteretic behavior was reverted in the presence of GSH and was notably dependent on pH, such that the magnitude of the lag time increased with the acidity of the medium. These results strongly suggest that a hysteretic kinetic is a common feature of TGR from any parasitic flatworm. A sequence comparison revealed the structural cysteine residues proposed to be in the origin of the peculiar kinetic behavior of TGR are absent from the F. hepatica enzyme. Based on these observations, the model proposed recently to explain the GSSG-dependent hysteretic kinetic of TGR, which assumes the covalent modification of specific cysteine residues through glutathionylation [Bonilla M. et al. (2008) J Biol Chem 283: 17898] needs to be reevaluated.


Assuntos
Fasciola hepatica/enzimologia , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Sequência de Aminoácidos , Animais , Cisteína/química , Dissulfetos/metabolismo , Eletroforese em Gel de Poliacrilamida , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Lineares , Dados de Sequência Molecular , Complexos Multienzimáticos/isolamento & purificação , NADH NADPH Oxirredutases/isolamento & purificação , Alinhamento de Sequência , Compostos de Sulfidrila/metabolismo , Tiorredoxinas/metabolismo
13.
J Parasitol Res ; 20102010.
Artigo em Inglês | MEDLINE | ID: mdl-20798751

RESUMO

Mitochondrial thioredoxin-glutathione reductase was purified from larval Taenia crassiceps (cysticerci). The preparation showed NADPH-dependent reductase activity with either thioredoxin or GSSG, and was able to perform thiol/disulfide exchange reactions. At 25 degrees C specific activities were 437 +/- 27 mU mg(-1) and 840 +/- 49 mU mg(-1) with thioredoxin and GSSG, respectively. Apparent K(m) values were 0.87 +/- 0.04 muM, 41 +/- 6 muM and 19 +/- 10 muM for thioredoxin, GSSG and NADPH, respectively. Thioredoxin from eukaryotic sources was accepted as substrate. The enzyme reduced H(2)O(2) in a NADPH-dependent manner, although with low catalytic efficiency. In the presence of thioredoxin, mitochondrial TGR showed a thioredoxin peroxidase-like activity. All disulfide reductase activities were inhibited by auranofin, suggesting mTGR is dependent on selenocysteine. The reductase activity with GSSG showed a higher dependence on temperature as compared with the DTNB reductase activity. The variation of the GSSG- and DTNB reductase activities on pH was dependent on the disulfide substrate. Like the cytosolic isoform, mTGR showed a hysteretic kinetic behavior at moderate or high GSSG concentrations, but it was less sensitive to calcium. The enzyme was able to protect glutamine synthetase from oxidative inactivation, suggesting that mTGR is competent to contend with oxidative stress.

14.
Parasitol Res ; 107(1): 227-31, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20431894

RESUMO

Control of cellular redox homeostasis is a central issue for all living organisms. Glutathione and thioredoxin enzymatic redox systems are the usual mean used to achieve such a control. However, parasitic platyhelminths studied to date possess a nicotinamide adenine dinucleotide phosphate-dependent thioredoxin-glutathione reductase (TGR) as the sole redox control system. Thus, TGR is considered as a potential therapeutic target of parasitic platyhelminths, and based on this assumption, the gold compound auranofin is a potent inhibitor of TGR. The aim of this research was to investigate the effect of auranofin on metacestode (cysticerci) of Taenia crassiceps in culture. Accordingly, the time course for viability and respiration of cysticerci in culture was evaluated in the presence of this compound. After 4 h at 10 microM auranofin, 90% of cysticerci were alive, but respiration activity had declined by 50%. After 12 h, neither survivors nor respiration was detected; a LD(50) for auranofin of 3.8 microM was calculated. Interestingly, crude extracts of cysticerci pretreated with 3 microM auranofin nearly nil TGR activity (IC(50) = 0.6 microM). Zymography for TGR in polyacrylamide gel electrophoresis was conducted because the previously mentioned extracts clearly showed a dose-response inactivation of TGR toward auranofin. The killing of cysticerci by this gold compound is most likely related with TGR inactivation. Therefore, further research on the suitability of auranofin as a therapeutic tool in the treatment of cysticercosis in animals and humans is sustained.


Assuntos
Anti-Helmínticos/farmacologia , Auranofina/farmacologia , Cysticercus/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Helminto/antagonistas & inibidores , Complexos Multienzimáticos/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Taenia/efeitos dos fármacos , Animais , Eletroforese em Gel de Poliacrilamida , Feminino , Concentração Inibidora 50 , Dose Letal Mediana , Camundongos , Camundongos Endogâmicos BALB C , Respiração/efeitos dos fármacos , Análise de Sobrevida , Fatores de Tempo
15.
Mol Biochem Parasitol ; 162(2): 123-33, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18765260

RESUMO

The tegumental membrane of Taenia crassiceps cysticerci contains an ATP-diphosphohydrolase (EC 3.6.1.5) which hydrolyzes purine and pyrimidine nucleoside 5'-di- and 5'-triphosphates at an optimum pH of 8.5. It is Mg(2+)-dependent and insensitive to classical ATPase and phosphatase inhibitors. In solubilized tegumental membrane the Km values varied from 220 to 480 microM and the V(max) from 370 to 748 nmol of Pi release/mg/min for nucleoside triphosphates (ATP, GTP, CTP, UTP, and TTP); for nucleoside diphosphates (ADP, GDP, CDP, and UDP) the Km values were from 260 to 450 microM and the V(max) from 628 to 1134 nmol of Pi release/mg/min. An antibody specific to CD39 shows cross-reactivity with T. crassiceps ATP-diphosphohydrolase, revealing a single protein of approximately 80 kDa. Incubation of ATP-diphosphohydrolase with FSBA inhibited ATPase and ADPase activities by 85-90%. Immunoblot analyses, the competition plot, similar inhibition by free nucleotides, the lack of effect of Mg(2+) at high concentrations, and the inactivation by FSBA of ATPase and ADPase activity strongly suggest that a single enzyme catalyzes the hydrolysis of all these nucleotides. The mechanism of ATP hydrolysis shows that ATP-diphosphohydrolase releases ADP during the catalytic cycle. Incubation of intact cysticerci with FSBA caused 70-80% inhibition of ATPase and ADPase activities, indicating that the active site of the ATP-diphosphohydrolase is oriented to the external surface of the tegument of T. crassiceps. The importance of this enzyme in the parasite-host relationship is discussed.


Assuntos
Adenosina/análogos & derivados , Marcadores de Afinidade/farmacologia , Apirase/antagonistas & inibidores , Taenia/enzimologia , Adenosina/farmacologia , Animais , Antígenos CD/química , Antígenos CD/metabolismo , Apirase/química , Apirase/metabolismo , Inibidores Enzimáticos/farmacologia , Concentração de Íons de Hidrogênio , Cinética , Taenia/efeitos dos fármacos , Taenia/metabolismo
16.
Parasitol Res ; 102(6): 1351-7, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18297308

RESUMO

Glucose 6-phosphate dehydrogenase (EC 1.1.1.49) was purified to homogeneity from the soluble fraction of larval Taenia crassiceps (Eucestoda: Cyclophyllidea) by a three-step protocol. Specific activity of the pure enzyme was 33.8 +/- 2.1 U mg(-1) at 25 degrees C and pH 7.8 with D: -glucose 6-phosphate and NADP+ as substrates. The activity increases to 67.6 +/- 3.9 U mg(-1) at 39 degrees C, a more physiological temperature in the intermediary host. Enzyme activity was maximal between pH 6.7 and 7.8. Km values were 14 +/- 1.7 microM and 1.3 +/- 0.4 microM for glucose 6-phosphate and NADP+, respectively. The enzyme showed absolute specificity for its sugar substrate. NAD+ was also a substrate but with a low catalytic efficiency (207 M(-1) s(-1)). No essential requirement for Mg++ or Ca++ was observed. Relative molecular mass of the native enzyme was 134,000 +/- 17,200, while a value of 61,000 +/- 1,700 was obtained for the enzyme subunit. Thus, glucose 6-phosphate dehydrogenase from T. crassiceps exists as a dimeric protein. The enzyme's isoelectric point was 4.5. The enzyme's activity dependence on temperature was complex, resulting in a biphasic Arrhenius plot. Activation energies of 9.91 +/- 0.51 and 7.94 +/- 0.45 kcal mol(-1) were obtained. Initial velocity patterns complemented with inhibition studies by product and substrate's analogues support a random bi bi sequential mechanism in rapid equilibrium. The low Ki value of 1.95 microM found for NADPH suggests a potential regulatory role for this nucleotide.


Assuntos
Glucosefosfato Desidrogenase/isolamento & purificação , Glucosefosfato Desidrogenase/metabolismo , Taenia/enzimologia , Animais , Coenzimas/farmacologia , Dimerização , Feminino , Glucose-6-Fosfato/metabolismo , Glucosefosfato Desidrogenase/química , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Cinética , Larva/enzimologia , Metais/farmacologia , Camundongos , Peso Molecular , NAD/metabolismo , NADP/metabolismo , Especificidade por Substrato , Temperatura
17.
Mol Biochem Parasitol ; 133(1): 61-9, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14668013

RESUMO

The multifunctional enzyme thioredoxin-glutathione reductase (TGR) was purified to homogeneity from the soluble fraction of Taenia crassiceps metacestode (cysticerci). Specific activities of 17.5 and 4.7 U mg(-1) were obtained with Plasmodium falciparum thioredoxin and GSSG, respectively, at pH 7.75. Under the same conditions, Km values of 17, 15, and 3 microM were respectively calculated for thioredoxin, GSSG and NADPH. The kcat/Km ratio of T. crassiceps TGR for both thioredoxin and GSSG falls in the range observed for typical thioredoxin reductases and glutathione reductases. Purified enzyme also showed glutaredoxin activity, with a specific activity of 19.2 U mg(-1) with hydroxyethyl disulfide as substrate. Both thioredoxin and GSSG disulfide reductase activities were fully inhibited by nanomolar concentrations of the gold compound auranofin, supporting the existence of an essential selenocysteine residue. Relative molecular mass of native enzyme was 136,000 +/- 3000, while the corresponding value per subunit, obtained under denaturing conditions, was 66,000 +/- 1000. These results suggest TGR exists as a dimeric protein. Isoelectric point of the enzyme was at pH 5.2. Moderate or high concentrations of GSSG, but neither thioredoxin nor NADPH, resulted in a markedly hysteretic kinetic, characterized by a lag time before the steady state velocity was reached. The magnitude of the lag time was dependent on GSSG and enzyme concentration. Preincubation of the enzyme with micromolar concentrations of GSH or DTT abolished the hysteresis, suggesting that a thiol-disulfide exchange mechanism is involved.


Assuntos
Cysticercus/enzimologia , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/isolamento & purificação , NADH NADPH Oxirredutases/metabolismo , Taenia/enzimologia , Sequência de Aminoácidos , Sulfato de Amônio , Animais , Cromatografia de Afinidade , Cromatografia em Gel , Cromatografia por Troca Iônica , Dimerização , Precipitação Fracionada , Glutationa/metabolismo , Ponto Isoelétrico , Dados de Sequência Molecular , Peso Molecular , Complexos Multienzimáticos/química , NADH NADPH Oxirredutases/química , NADP/metabolismo , Subunidades Proteicas/química , Selenocisteína/análise , Análise de Sequência de Proteína , Especificidade por Substrato , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...