Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0293730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37906561

RESUMO

Honey is an attractive natural product with various health benefits. A few honey-based commercial products have successfully been adopted in clinics to improve wound healing. However, screening of other potential sources of medical-grade honey, in particular, honeys from territories with high floral species diversity and high endemicity, is highly needed. The goal of this study was to characterise the physicochemical and antibacterial properties of New Caledonian honey samples (n = 33) and to elucidate the major mechanism of their antibacterial action. Inhibitory antibacterial activity of honeys against Staphylococcus aureus and Pseudomonas aeruginosa was determined with a minimum inhibitory concentration (MIC) assay. Enzymatic activity of glucose oxidase and the content of hydrogen peroxide (H2O2) in honey samples were analysed. Furthermore, total protein content of honeys together with their electrophoretic protein profiles were also determined in the study. The antibacterial efficacy of 24% of the tested honey samples was slightly superior to that of manuka honey with unique manuka factor 15+. The antibacterial activity of catalase-treated honey sample solutions was significantly reduced, suggesting that H2O2 is a key antibacterial compound of diluted honeys. However, the kinetic profiles of H2O2 production in most potent honeys at a MIC value of 6% was not uniform. Under the experimental conditions, we found that a H2O2 concentration of 150 µM in diluted honeys is a critical concentration for inhibiting the growth of S. aureus. In contrast, 150 µM H2O2 in artificial honey solution was not able to inhibit bacterial growth, suggesting a role of phytochemicals in the antibacterial activity of natural honey. In addition, the continuous generation of H2O2 in diluted honey demonstrated an ability to counteract additional bacteria in re-inoculation experiments. In conclusion, the tested New Caledonian honey samples showed strong antibacterial activity, primarily based on H2O2 action, and therefore represent a suitable source for medical-grade honey.


Assuntos
Mel , Mel/análise , Staphylococcus aureus , Peróxido de Hidrogênio , Antibacterianos/química , Testes de Sensibilidade Microbiana
2.
Environ Pollut ; 335: 122257, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506807

RESUMO

This study investigated trace element contamination in honey bees inhabiting urban areas around the South Pacific's largest and longest operating nickel smelter in Nouméa, New Caledonia. There remains a paucity of research on the environmental impact of nickel smelting, and to date, there has been no assessment of its effects on the popular practice of beekeeping, or whether honey bees are a suitable tracer for nickel smelting emissions. Honey bees and honey were sampled from 15 hives across Nouméa to ascertain linkages between nickel smelter emissions, environmental contamination, and trace element uptake by bees. Comparison of washed and unwashed bees revealed no significant difference in trace element concentrations, indicating trace elements bioaccumulate within the internal tissues of bees over time. Accordingly, trace element concentrations were higher in dead bees than those that were sampled live, with smelter related elements chromium, cobalt and nickel being significantly different at p < 0.05. Except for boron, trace element concentrations were consistently higher in bees than in honey, suggesting that the transfer of trace elements from bees during honey production is negligible. Elevated concentrations of potentially toxic trace elements including cobalt, chromium and nickel in bees declined with distance from smelting operations (Spearman's Rho, p < 0.05), indicating the relationship between environmental contamination and the uptake of trace elements by bees. The findings of this study emphasise potential environmental and human health risks associated with trace element contamination from nickel smelting operations and affirm the use of honey bees as a biomonitor of potentially harmful nickel smelting emissions.


Assuntos
Mel , Oligoelementos , Abelhas , Animais , Humanos , Níquel , Cromo , Cobalto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...