Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18927, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919374

RESUMO

Phage display is a molecular biology technique that allows the presentation of foreign peptides on the surface of bacteriophages. It is widely utilized for applications such as the discovery of biomarkers, the development of therapeutic antibodies, and the investigation of protein-protein interactions. When employing phages in diagnostic and therapeutic monitoring assays, it is essential to couple them with a detection system capable of revealing and quantifying the interaction between the peptide displayed on the phage capsid and the target of interest. This process is often technically challenging and costly. Here, we generated a fluorescent helper phage vector displaying sfGFP in-frame to the pIII of the capsid proteins. Further, we developed an exchangeable dual-display phage system by combining our newly developed fluorescent helper phage vector with a phagemid vector harboring the engineered pVIII with a peptide-probe. By doing so, the sfGFP and a peptide-probe are displayed on the same phage particle. Notably, our dual-display approach is highly flexible as it allows for easy exchange of the displayed peptide-probe on the pVIII to gain the desired selectivity, while maintaining the sfGFP gene, which allows easy visualization and quantification of the interaction peptide-probe. We anticipate that this system will reduce time and costs compared to the current phage-based detection systems.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Biblioteca de Peptídeos , Peptídeos/química , Proteínas do Capsídeo/genética , Capsídeo/metabolismo
2.
Microorganisms ; 11(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513014

RESUMO

We report the ability of the crude biosurfactant (BS B3-15), produced by the marine, thermotolerant Bacillus licheniformis B3-15, to hinder the adhesion and biofilm formation of Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 29213 to polystyrene and human cells. First, we attempted to increase the BS yield, optimizing the culture conditions, and evaluated the surface-active properties of cell-free supernatants. Under phosphate deprivation (0.06 mM) and 5% saccharose, the yield of BS (1.5 g/L) increased by 37%, which could be explained by the earlier (12 h) increase in lchAA expression compared to the non-optimized condition (48 h). Without exerting any anti-bacterial activity, BS (300 µg/mL) prevented the adhesion of P. aeruginosa and S. aureus to polystyrene (47% and 36%, respectively) and disrupted the preformed biofilms, being more efficient against S. aureus (47%) than P. aeruginosa (26%). When added to human cells, the BS reduced the adhesion of P. aeruginosa and S. aureus (10× and 100,000× CFU/mL, respectively) without altering the epithelial cells' viability. As it is not cytotoxic, BS B3-15 could be useful to prevent or remove bacterial biofilms in several medical and non-medical applications.

3.
Mar Drugs ; 21(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37233507

RESUMO

The eradication of bacterial biofilm represents a crucial strategy to prevent a clinical problem associated with microbial persistent infection. In this study we evaluated the ability of the exopolysaccharide (EPS) B3-15, produced by the marine Bacillus licheniformis B3-15, to prevent the adhesion and biofilm formation of Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 29213 on polystyrene and polyvinyl chloride surfaces. The EPS was added at different times (0, 2, 4 and 8 h), corresponding to the initial, reversible and irreversible attachment, and after the biofilm development (24 or 48 h). The EPS (300 µg/mL) impaired the initial phase, preventing bacterial adhesion even when added after 2 h of incubation, but had no effects on mature biofilms. Without exerting any antibiotic activity, the antibiofilm mechanisms of the EPS were related to the modification of the (i) abiotic surface properties, (ii) cell-surface charges and hydrophobicity, and iii) cell-to-cell aggregation. The addition of EPS downregulated the expression of genes (lecA and pslA of P. aeruginosa and clfA of S. aureus) involved in the bacterial adhesion. Moreover, the EPS reduced the adhesion of P. aeruginosa (five logs-scale) and S. aureus (one log) on human nasal epithelial cells. The EPS could represent a promising tool for the prevention of biofilm-related infections.


Assuntos
Bacillus licheniformis , Staphylococcus aureus , Humanos , Aderência Bacteriana , Antibacterianos , Biofilmes , Pseudomonas aeruginosa
4.
Adv Sci (Weinh) ; 10(21): e2301650, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150869

RESUMO

55 million people worldwide suffer from Alzheimer's disease (AD). A definitive diagnosis of AD is made postmortem after a neuropathological examination of the brain. There is an urgent need for an innovative, noninvasive methodology that allows for an early and reliable diagnosis. Several engineered phages that recognized Aß-autoantibodies present in the sera of AD patients are previously identified. Here, novel phages are tested for their ability to accurately discriminate AD sera using immunophage-polymerase chain reaction in a miniatured biochip. It is found that five of the six phages analyzed discriminate between healthy controls and AD patients. Further, by combining the response of two phages, non-AD and severe AD cases are identified with 100% accuracy and mild-to-moderate cases with 90% accuracy. While the number of cases used here are relatively small and can be confirmed in larger cohorts, this first-of-a-kind system represents an innovative methodology with the potential of having a major impact in the AD field: from a clinical perspective, it can aid physicians in making an accurate AD diagnosis; from a research perspective, it can be used as a surrogate for AD clinical trials.


Assuntos
Doença de Alzheimer , Bacteriófagos , Humanos , Doença de Alzheimer/diagnóstico , Bacteriófagos/genética , Encéfalo/patologia , Biomarcadores
5.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985465

RESUMO

Developing new broad-spectrum antimicrobial strategies, as alternatives to antibiotics and being able to efficiently inactivate pathogens without inducing resistance, is one of the main objectives in public health. Antimicrobial photodynamic therapy (aPDT), based on the light-induced production of reactive oxygen species from photosensitizers (PS), is attracting growing interest in the context of infection treatment, also including biofilm destruction. Due to the limited photostability of free PS, delivery systems are increasingly needed in order to decrease PS photodegradation, thus improving the therapeutic efficacy, as well as to reduce collateral effects on unaffected tissues. In this study, we propose a photosensitizing nanosystem based on the cationic porphyrin 5,10,15,20-tetrakis (N-methyl- 4-pyridyl)-21H,23H-porphyrin (TMPyP), complexed with the commerical sulfobutylether-beta-cyclodextrin (CAPTISOL®), at a 1:50 molar ratio (CAPTISOL®/TMPyP)50_1. Nanoassemblies based on (CAPTISOL®/TMPyP)50_1 with photodynamic features exhibited photo-antimicrobial activity against Gram-negative and Gram-positive bacteria. Moreover, results from P. aeruginosa reveal that CAPTISOL® alone inhibits pyocyanin (PYO) production, also affecting bacterial biofilm formation. Finally, we obtained a synergistic effect of inhibition and destruction of P. aeruginosa biofilm by using the combination of CAPTISOL® and TMPyP.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Porfirinas , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Anti-Infecciosos/farmacologia , Porfirinas/farmacologia , Biofilmes
6.
Biomater Adv ; 145: 213193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587469

RESUMO

In the biomedical field, the demand for the development of broad-spectrum biomaterials able to inhibit bacterial growth is constantly increasing. Chronic infections represent the most serious and devastating complication related to the use of biomaterials. This is particularly relevant in the orthopaedic field, where infections can lead to implant loosening, arthrodesis, amputations and sometimes death. Antibiotics are the conventional approach for implanted-associated infections, but they have the limitation of increasing antibiotic resistance, a critical worldwide healthcare issue. In this context, the development of anti-infective biomaterials and infection-resistant surfaces can be considered the more effective strategy to prevent the implant colonisation and biofilm formation by bacteria, so reducing the occurrence of implant-associated infections. In the last years, inorganic nanostructures have become extremely appealing for chemical modifications or coatings of Ti surfaces, since they do not generate antibiotic resistance issues and are featured by superior stability, durability, and full compatibility with the sterilization process. In this work, we present a simple, rapid, and cheap chemical nanofunctionalization of titanium (Ti) scaffolds with colloidal ZnO and Mn-doped ZnO nanoparticles (NPs), prepared by a sol-gel method, exhibiting antibacterial activity. ZnO NPs and ZnxMn(1-x)O NPs formation with a size around 10-20nm and band gap values of 3.42 eV and 3.38 eV, respectively, have been displayed by characterization studies. UV-Vis, fluorescence, and Raman investigation suggested that Mn ions acting as dopants in the ZnO lattice. Ti scaffolds have been functionalized through dip coating, obtaining ZnO@Ti and ZnxMn(1-x)O@Ti biomaterials characterized by a continuous nanostructured film. ZnO@Ti and ZnxMn(1-x)O@Ti displayed an enhanced antibacterial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Pseudomonas aeruginosa (P. aeruginosa) bacterial strains, compared to NPs in solution with better performance of ZnxMn(1-x)O@Ti respect to ZnO@Ti. Notably, it has been observed that ZnxMn(1-x)O@Ti scaffolds reach a complete eradication for S. aureus and 90 % of reduction for P. aeruginosa. This can be attributed to Zn2+ and Mn2+ metal ions release (as observed by ICP MS experiments) that is also maintained over time (72 h). To the best of our knowledge, this is the first study reported in the literature describing ZnO and Mn-doped ZnO NPs nanofunctionalized Ti scaffolds with improved antibacterial performance, paving the way for the realization of new hybrid implantable devices through a low-cost process, compatible with the biotechnological industrial chain method.


Assuntos
Nanoestruturas , Óxido de Zinco , Titânio/farmacologia , Óxido de Zinco/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química , Materiais Biocompatíveis/farmacologia , Zinco/farmacologia
7.
Microorganisms ; 10(9)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36144380

RESUMO

The growing increase in antibiotic-resistant bacteria has led to the search for new antibacterial agents capable of overcoming the resistance problem. In recent years, nanoparticles (NPs) have been increasingly used to target bacteria as an alternative to antibiotics. The most promising nanomaterials for biomedical applications are metal and metal oxide NPs, due to their intrinsic antibacterial activity. Although NPs show interesting antibacterial properties, the mechanisms underlying their action are still poorly understood, limiting their use in clinical applications. In this review, an overview of the mechanisms underlying the antibacterial activity of metal and metal oxide NPs will be provided, relating their efficacy to: (i) bacterial strain; (ii) higher microbial organizations (biofilm); (iii) and physico-chemical properties of NPs. In addition, bacterial resistance strategies will be also discussed to better evaluate the feasibility of the different treatments adopted in the clinical safety fields. Finally, a wide analysis on recent biomedical applications of metal and metal oxide NPs with antibacterial activity will be provided.

8.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955847

RESUMO

Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease represent some of the most prevalent neurodegenerative disorders afflicting millions of people worldwide. Unfortunately, there is a lack of efficacious treatments to cure or stop the progression of these disorders. While the causes of such a lack of therapies can be attributed to various reasons, the disappointing results of recent clinical trials suggest the need for novel and innovative approaches. Since its discovery, there has been a growing excitement around the potential for CRISPR-Cas9 mediated gene editing to identify novel mechanistic insights into disease pathogenesis and to mediate accurate gene therapy. To this end, the literature is rich with experiments aimed at generating novel models of these disorders and offering proof-of-concept studies in preclinical animal models validating the great potential and versatility of this gene-editing system. In this review, we provide an overview of how the CRISPR-Cas9 systems have been used in these neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Terapia Genética/métodos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico
9.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806393

RESUMO

Articular cartilage is characterized by a poor self-healing capacity due to its aneural and avascular nature. Once injured, it undergoes a series of catabolic processes which lead to its progressive degeneration and the onset of a severe chronic disease called osteoarthritis (OA). In OA, important alterations of the morpho-functional organization occur in the cartilage extracellular matrix, involving all the nearby tissues, including the subchondral bone. Osteochondral engineering, based on a perfect combination of cells, biomaterials and biomolecules, is becoming increasingly successful for the regeneration of injured cartilage and underlying subchondral bone tissue. To this end, recently, several peptides have been explored as active molecules and enrichment motifs for the functionalization of biomaterials due to their ability to be easily chemically synthesized, as well as their tunable physico-chemical features, low immunogenicity issues and functional group modeling properties. In addition, they have shown a good aptitude to penetrate into the tissue due to their small size and stability at room temperature. In particular, growth-factor-derived peptides can play multiple functions in bone and cartilage repair, exhibiting chondrogenic/osteogenic differentiation properties. Among the most studied peptides, great attention has been paid to transforming growth factor-ß and bone morphogenetic protein mimetic peptides, cell-penetrating peptides, cell-binding peptides, self-assembling peptides and extracellular matrix-derived peptides. Moreover, recently, phage display technology is emerging as a powerful selection technique for obtaining functional peptides on a large scale and at a low cost. In particular, these peptides have demonstrated advantages such as high biocompatibility; the ability to be immobilized directly on chondro- and osteoinductive nanomaterials; and improving the cell attachment, differentiation, development and regeneration of osteochondral tissue. In this context, the aim of the present review was to go through the recent literature underlining the importance of studying novel functional motifs related to growth factor mimetic peptides that could be a useful tool in osteochondral repair strategies. Moreover, the review summarizes the current knowledge of the use of phage display peptides in osteochondral tissue regeneration.


Assuntos
Cartilagem Articular , Osteoartrite , Materiais Biocompatíveis/química , Cartilagem Articular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Osteoartrite/terapia , Osteogênese , Peptídeos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
10.
Nanomaterials (Basel) ; 12(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35269375

RESUMO

Carbon nanomaterials have shown great potential in several fields, including biosensing, bioimaging, drug delivery, energy, catalysis, diagnostics, and nanomedicine. Recently, a new class of carbon nanomaterials, carbon dots (CDs), have attracted much attention due to their easy and inexpensive synthesis from a wide range of precursors and fascinating physical, chemical, and biological properties. In this work we have developed CDs derived from olive solid wastes of two Mediterranean regions, Puglia (CDs_P) and Calabria (CDs_C) and evaluated them in terms of their physicochemical properties and antibacterial activity against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). Results show the nanosystems have a quasi-spherical shape of 12-18 nm in size for CDs_P and 15-20 nm in size for CDs_C. UV-Vis characterization indicates a broad absorption band with two main peaks at about 270 nm and 300 nm, respectively, attributed to the π-π* and n-π* transitions of the CDs, respectively. Both samples show photoluminescence (PL) spectra excitation-dependent with a maximum at λem = 420 nm (λexc = 300 nm) for CDs_P and a red-shifted at λem = 445 nm (λexc = 300 nm) for CDs_C. Band gaps values of ≈ 1.48 eV for CDs_P and ≈ 1.53 eV for CDs_C are in agreement with semiconductor behaviour. ζ potential measures show very negative values for CDs_C compared to CDs_P (three times higher, -38 mV vs. -18 mV at pH = 7). The evaluation of the antibacterial properties highlights that both CDs have higher antibacterial activity towards Gram-positive than to Gram-negative bacteria. In addition, CDs_C exhibit bactericidal behaviour at concentrations of 360, 240, and 120 µg/mL, while lesser activity was found for CDs_P (bacterial cell reduction of only 30% at the highest concentration of 360 µg/mL). This finding was correlated to the higher surface charge of CDs_C compared to CDs_P. Further investigations are in progress to confirm this hypothesis and to gain insight on the antibacterial mechanism of both cultivars.

11.
Pathogens ; 11(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35215162

RESUMO

Indoor air sanitizers contrast airborne diseases and particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/Coronavirus disease 2019 (COVID-19). The commercial air sanitizer Zefero (Cf7 S.r.l., San Giovanni La Punta, Italy) works alternatively using a set of integrated disinfecting technologies (namely Photocatalysis/UV mode) or by generating ozone (Ozone mode). Here we evaluated the virucidal efficacy of Zefero setup modes against human Betacoronavirus OC43 and SARS-CoV-2. For this purpose, we designed a laboratory test system in which each virus, as aerosol, was treated with Photocatalysis/UV or Ozone mode and returned into a recirculation plexiglass chamber. Aerosol samples were collected after different times of exposure, corresponding to different volumes of air treated. The viral RNA concentration was determined by qRT-PCR. In Photocatalysis/UV mode, viral RNA of OC43 or SARS-CoV-2 was not detected after 120 or 90 min treatment, respectively, whereas in Ozone mode, viruses were eliminated after 30 or 45 min, respectively. Our results indicated that the integrated technologies used in the air sanitizer Zefero are effective in eliminating both viruses. As a reliable experimental system, the recirculation chamber developed in this study represents a suitable apparatus for effectively comparing the disinfection capacity of different air sanitizers.

12.
J Appl Microbiol ; 132(1): 401-412, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34260800

RESUMO

AIMS: This study was to analyse the biomass production and fatty acids (FAs) profiles in a newly isolated chlorophyte, namely Coccomyxa AP01, under nutritionally balanced (NB) conditions (comparing nitrate and urea as nitrogen sources) and nitrogen or phosphate deprivation. METHODS AND RESULTS: Lipid yields was about 30%-40% of dried biomasses in all examined nutritional conditions. Under NB conditions, lipids were principally constituted by monounsaturated FAs, mainly represented by oleic acid, and saturated and polyunsaturated FAs at similar concentrations. Nutrients deprivation induced remarkable changes in FAs profiles, with the highest amounts of saturated (42%-46%), followed by similar amounts of monounsaturated and polyunsaturated, and the emergence of rare long-chain FAs. Under phosphate deprivation, biomass yield was similar to NB conditions, with the highest yield of saturated (mainly palmitic acid) and of polyunsaturated FAs (33%) (mainly linoleic and linolenic acids). CONCLUSIONS: Balanced or deprived nutritional conditions in Coccomyxa AP01 induced a selective production and composition of FAs. The phosphate-deprivation condition concomitantly provided high biomass yield and the production of high value saturated and polyunsaturated FAs with industrial interest. SIGNIFICANCE AND IMPACT OF THE STUDY: Coccomyxa AP01 could be considered a promising source of different FAs, including also docosapentaenoic acid, for several commercial purposes spanning from biodiesel production, pharmaceutical and cosmetic applications to innovative aquaculture fish feeds.


Assuntos
Clorófitas , Ácidos Graxos , Animais , Biomassa , Água Doce , Lipídeos
13.
Entropy (Basel) ; 23(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807240

RESUMO

The solar photosphere and the outer layer of the Sun's interior are characterized by convective motions, which display a chaotic and turbulent character. In this work, we evaluated the pseudo-Lyapunov exponents of the overshooting convective motions observed on the Sun's surface by using a method employed in the literature to estimate those exponents, as well as another technique deduced from their definition. We analyzed observations taken with state-of-the-art instruments at ground- and space-based telescopes, and we particularly benefited from the spectro-polarimetric data acquired with the Interferometric Bidimensional Spectrometer, the Crisp Imaging SpectroPolarimeter, and the Helioseismic and Magnetic Imager. Following previous studies in the literature, we computed maps of four quantities which were representative of the physical properties of solar plasma in each observation, and estimated the pseudo-Lyapunov exponents from the residuals between the values of the quantities computed at any point in the map and the mean of values over the whole map. In contrast to previous results reported in the literature, we found that the computed exponents hold negative values, which are typical of a dissipative regime, for all the quantities derived from our observations. The values of the estimated exponents increase with the spatial resolution of the data and are almost unaffected by small concentrations of magnetic field. Finally, we showed that similar results were also achieved by estimating the exponents from residuals between the values at each point in maps derived from observations taken at different times. The latter estimation technique better accounts for the definition of these exponents than the method employed in previous studies.

14.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810266

RESUMO

The conformational variation of the viral capsid structure plays an essential role both for the environmental resistance and acid nuclear release during cellular infection. The aim of this study was to evaluate how capsid rearrangement in engineered phages of M13 protects viral DNA and peptide bonds from damage induced by UV-C radiation. From in silico 3D modelling analysis, two M13 engineered phage clones, namely P9b and 12III1, were chosen for (i) chemical features of amino acids sequences, (ii) rearrangements in the secondary structure of their pVIII proteins and (iii) in turn the interactions involved in phage capsid. Then, their resistance to UV-C radiation and hydrogen peroxide (H2O2) was compared to M13 wild-type vector (pC89) without peptide insert. Results showed that both the phage clones acquired an advantage against direct radiation damage, due to a reorganization of interactions in the capsid for an increase of H-bond and steric interactions. However, only P9b had an increase in resistance against H2O2. These results could help to understand the molecular mechanisms involved in the stability of new virus variants, also providing quick and necessary information to develop effective protocols in the virus inactivation for human activities, such as safety foods and animal-derived materials.


Assuntos
Bacteriófago M13/efeitos da radiação , Proteínas do Capsídeo/química , Tolerância a Radiação , Raios Ultravioleta , Bacteriófago M13/química , Bacteriófago M13/efeitos dos fármacos , Farmacorresistência Viral , Peróxido de Hidrogênio/toxicidade , Domínios Proteicos
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 258: 119813, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33892305

RESUMO

Trusted methods for identifying different Multiple Myeloma (MM) cells and their biological diversity due to their immunophenotypic variety are often little detailed and difficult to find in literature. In this work, we show that micro-Raman spectroscopy can be used to highlight if there is a certain degree of distinction or correlation between the MM subtype plasmacells in relation to the cluster of differentiation (CD45+/CD38+/CD138-) and (CD45-/CD38+/CD138+). After taking samples from the bone marrow of patients with Multiple Myeloma, the PCs were sorted by flow cytometry, selecting the most common CD of the disease, i.e. CD 45, CD38 and CD138. Some spectral differences are observed comparing the Raman spectra of the two set of samples investigated. To better define in which spectral regions there are greater differences and, therefore, to which biological contributions the changes refers, we also explored the principal component analysis (PCA) of the collected Raman data. The spectral variations between the different sorted cells have been highlighted by plotting loading vectors PC1 and PC2, which shows a net differentiation between the two set of cells. Ultimately, the differences shown by PCA have been associated with the spectral variations observed and explained in terms of changes of proteins and lipid contributions. Thus, the differentiation of Multiple Myeloma subtype plasma cells by confocal micro-Raman spectroscopy can be proposed as a diagnostic tool in the speeding up of cell identification, assessing the intracellular biochemical changes that take place in cancer cells.


Assuntos
Mieloma Múltiplo , Medula Óssea , Citometria de Fluxo , Humanos , Mieloma Múltiplo/diagnóstico , Análise Multivariada , Plasmócitos
16.
Molecules ; 26(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669712

RESUMO

Hydroxyapatite (HA) is the main inorganic mineral that constitutes bone matrix and represents the most used biomaterial for bone regeneration. Over the years, it has been demonstrated that HA exhibits good biocompatibility, osteoconductivity, and osteoinductivity both in vitro and in vivo, and can be prepared by synthetic and natural sources via easy fabrication strategies. However, its low antibacterial property and its fragile nature restricts its usage for bone graft applications. In this study we functionalized a MgHA scaffold with gold nanorods (AuNRs) and evaluated its antibacterial effect against S. aureus and E. coli in both suspension and adhesion and its cytotoxicity over time (1 to 24 days). Results show that the AuNRs nano-functionalization improves the antibacterial activity with 100% bacterial reduction after 24 h. The toxicity study, however, indicates a 4.38-fold cell number decrease at 24 days. Although further optimization on nano-functionalization process are needed for cytotoxicity, these data indicated that Au-NRs nano-functionalization is a very promising method for improving the antibacterial properties of HA.


Assuntos
Anti-Infecciosos/farmacologia , Durapatita/farmacologia , Ouro/farmacologia , Magnésio/farmacologia , Nanotubos/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Nanotubos/ultraestrutura , Espectroscopia Fotoeletrônica , Staphylococcus aureus/efeitos dos fármacos , Alicerces Teciduais/química
17.
Mater Sci Eng C Mater Biol Appl ; 118: 111394, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254999

RESUMO

We report a new chemical method for the functionalization of Mg-hydroxyapatite (Mg-HA) scaffold with Ag nanoparticles (Ag NPs) integrating in one step both the synthesis of the Ag NPs and their nano-structuring into the HA matrix (Ag-Mg-HA scaffold). This method exploits a green photochemical synthesis and allows the direct growth of Ag NPs on the Mg-HA surface. The surface structure of Ag-Mg-HA scaffold, investigated by scanning electron microscopy, shows no significant changes in the morphology upon Ag NPs incorporation. The presence of Ag was confirmed by EDX analysis. TEM and spectroscopic investigations show Ag NPs spherical shaped with a mean diameter of about 20 nm exhibiting the typical plasmon absorption band with maximum at 420 nm. The antibacterial properties of Ag-Mg-HA scaffolds were tested against two bacterial strains, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results show excellent antibacterial properties achieving up to 99% and 100% reduction of colonies for both bacteria cultures after 24 h of incubation and 100% of reduction after 48 h of incubation. The cytotoxicity of Ag-Mg-HA was also in deep investigated assessing both cell proliferation and differentiation using hADSCs (human Adipose Derived Stem Cells) and testing data point at 0, 7, 14 and 24 days. The results show cytotoxic effect with cell proliferation decreasing up to 90% at 24 days and osteogenic differentiation inhibition. The observed cytotoxicity can be probable ascribed to the oxidative stress by ROS. Indeed, considering the effectiveness of the nanofunctionalization method and the excellent antibacterial properties showed by the Ag-Mg-HA scaffold, future works will be devoted to create nanofunctionalized scaffold satisfying both antimicrobial and osteo-regenerative properties.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Durapatita , Escherichia coli , Humanos , Osteogênese , Porosidade , Staphylococcus aureus
18.
Regen Biomater ; 7(5): 461-469, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33149935

RESUMO

Nanotechnology plays a key role in the development of innovative scaffolds for bone tissue engineering (BTE) allowing the incorporation of nanomaterials able to improve cell proliferation and differentiation. In this study, Mg-HA-Coll type I scaffolds (Mg-HA-based scaffolds) were nanofunctionalized with gold nanorods (Au NRs), palladium nanoparticles (Pd NPs) and maghemite nanoparticles (MAG NPs). Nanofunctionalized Mg-HA-based scaffolds (NF-HA-Ss) were tested for their ability to promote both the proliferation and the differentiation of adipose-derived mesenchymal stem cells (hADSCs). Results clearly highlight that MAG nanofunctionalization substantially improves cell proliferation up to 70% compared with the control (Mg-HA-based scaffold), whereas both Au NRs and Pd NPs nanofunctionalization induce a cell growth inhibition of 94% and 89%, respectively. Similar evidences were found for the osteoinductive properties showing relevant calcium deposits (25% higher than the control) for MAG nanofunctionalization, while a decreasing of cell differentiation (20% lower than the control) for both Au NRs and Pd NPs derivatization. These results are in agreement with previous studies that found cytotoxic effects for both Pd NPs and Au NRs. The excellent improvement of both osteoconductivity and osteoinductivity of the MAG NF-HA-S could be attributed to the high intrinsic magnetic field of superparamagnetic MAG NPs. These findings may pave the way for the development of innovative nanostructured scaffolds for BTE.

19.
Life (Basel) ; 10(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143156

RESUMO

Extremophiles are optimal models in experimentally addressing questions about the effects of cosmic radiation on biological systems. The resistance to high charge energy (HZE) particles, and helium (He) ions and iron (Fe) ions (LET at 2.2 and 200 keV/µm, respectively, until 1000 Gy), of spores from two thermophiles, Bacillushorneckiae SBP3 and Bacilluslicheniformis T14, and two psychrotolerants, Bacillus sp. A34 and A43, was investigated. Spores survived He irradiation better, whereas they were more sensitive to Fe irradiation (until 500 Gy), with spores from thermophiles being more resistant to irradiations than psychrotolerants. The survived spores showed different germination kinetics, depending on the type/dose of irradiation and the germinant used. After exposure to He 1000 Gy, D-glucose increased the lag time of thermophilic spores and induced germination of psychrotolerants, whereas L-alanine and L-valine increased the germination efficiency, except alanine for A43. FTIR spectra showed important modifications to the structural components of spores after Fe irradiation at 250 Gy, which could explain the block in spore germination, whereas minor changes were observed after He radiation that could be related to the increased permeability of the inner membranes and alterations of receptor complex structures. Our results give new insights on HZE resistance of extremophiles that are useful in different contexts, including astrobiology.

20.
Int J Pharm ; 585: 119487, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32492506

RESUMO

Nowadays, novel less-expensive nanoformulations for in situ-controlled and safe delivery of photosensitisers (PSs) against opportunistic pathogens in body-infections areas need to be developed. Antimicrobial photodynamic therapy (aPDT) is a promising approach to treat bacterial infections that are recalcitrant to antibiotics. In this paper, we propose the design and characterization of a novel nanophototherapeutic based on the trade cyclodextrin CAPTISOL® (sulfobutylether-beta-cyclodextrin, SBE-ßCD) and 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphine tetrakis(p-toluenesulfonate) (TMPyP) to fabricate efficient biocompatible systems for aPDT. Spherical nanoassemblies of about 360 nm based on CAPTISOL®/TMPyP supramolecular complexes with 1:1 stoichiometry and apparent equilibrium binding constant (Kb â‰… 1.32 × 105 M-1) were prepared with entrapment efficiency of â‰… 100% by simple mixing in aqueous media and freeze-drying. These systems have been characterized by complementary spectroscopy and microscopy techniques. Time resolved fluorescence pointed out the strong interaction of porphyrin monomer within nanoassemblies (τ2 â‰… 11 ns with an amount of ca 90%) and scarce self-aggregation of porphyrins have been observed. Singlet oxygen comparative determination (Ï•Δ CAPTISOL®/TMPyP = 0.58) assessed their photodynamic potential. Release and photostability studies have been carried out under physiological conditions pointing out the role of CAPTISOL® to sustain porphyrin release for more than 2 weeks and to protect PS from photodegradation. Finally, photoantimicrobial activity of nanoassemblies vs free porphyrin have been investigated against Gram-negative P. aeruginosa, E. coli and Gram-positive S. aureus. The proposed nanosystems were able to photokill both Gram-positive and -negative bacterial cells similarly to TMPyP at MBC90 = 6 µM of TMPyP and at 42 J/cm2 light dose. However, with respect to the less selective free TMPyP in biological sites, nanoassemblies exhibit sustained release properties and a higher photostability thus optimizing the PDT effect at the site of action. These results can open routes for in vivo translational studies on nano(photo)drugs and nanotheranostics based on less expensive formulations of CD and PS.


Assuntos
Anti-Infecciosos/síntese química , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/síntese química , Porfirinas/síntese química , beta-Ciclodextrinas/síntese química , Anti-Infecciosos/administração & dosagem , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Excipientes/administração & dosagem , Excipientes/síntese química , Luz/efeitos adversos , Nanopartículas/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , beta-Ciclodextrinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...