Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 110(1-2): 015302, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39160985

RESUMO

We develop a numerical method for simulating the dynamics of a droplet immersed in a generic time-dependent velocity gradient field. This approach is grounded on the hybrid coupling between the lattice Boltzmann (LB) method, employed for the flow simulation, and the immersed boundary (IB) method, utilized to couple the droplet with the surrounding fluid. We show how to enrich the numerical scheme with a mesh regularization technique, allowing droplets to sustain large deformations. The resulting methodology is adapted to simulate the dynamics of droplets in homogeneous and isotropic turbulence, with the characteristic size of the droplet being smaller than the characteristic Kolmogorov scale of the outer turbulent flow. We report statistical results for droplet deformation and orientation collected from an ensemble of turbulent trajectories, as well as comparisons with theoretical models in the limit of small deformation.

2.
Philos Trans A Math Phys Eng Sci ; 379(2208): 20200395, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34455835

RESUMO

The tumbling to tank-treading (TB-TT) transition for red blood cells (RBCs) has been widely investigated, with a main focus on the effects of the viscosity ratio [Formula: see text] (i.e., the ratio between the viscosities of the fluids inside and outside the membrane) and the shear rate [Formula: see text] applied to the RBC. However, the membrane viscosity [Formula: see text] plays a major role in a realistic description of RBC dynamics, and only a few works have systematically focused on its effects on the TB-TT transition. In this work, we provide a parametric investigation on the effect of membrane viscosity [Formula: see text] on the TB-TT transition for a single RBC. It is found that, at fixed viscosity ratios [Formula: see text], larger values of [Formula: see text] lead to an increased range of values of capillary number at which the TB-TT transition occurs; moreover, we found that increasing [Formula: see text] or increasing [Formula: see text] results in a qualitatively but not quantitatively similar behaviour. All results are obtained by means of mesoscale numerical simulations based on the lattice Boltzmann models. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.

3.
Soft Matter ; 17(24): 5978-5990, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34048527

RESUMO

We use mesoscale numerical simulations to investigate the unsteady dynamics of a single red blood cell (RBC) subjected to an external mechanical load. We carry out a detailed comparison between the loading (L) dynamics, following the imposition of the mechanical load on the RBC at rest, and the relaxation (R) dynamics, allowing the RBC to relax to its original shape after the sudden arrest of the mechanical load. Such a comparison is carried out by analyzing the characteristic times of the two corresponding dynamics, i.e., tL and tR. When the intensity of the mechanical load is small enough, the two kinds of dynamics are symmetrical (tL≈tR) and independent of the typology of mechanical load (intrinsic dynamics); otherwise, in marked contrast, an asymmetry is found, wherein the loading dynamics is typically faster than the relaxation one. This asymmetry manifests itself with non-universal characteristics, e.g., dependency on the applied load and/or on the viscoelastic properties of the RBC membrane. To deepen such a non-universal behaviour, we consider the viscosity of the erythrocyte membrane as a variable parameter and focus on three different typologies of mechanical load (mechanical stretching, shear flow, elongational flow): this allows to clarify how non-universality builds up in terms of the deformation and rotational contributions induced by the mechanical load on the membrane. Finally, we also investigate the effect of the elastic shear modulus on the characteristic times tL and tR. Our results provide crucial and quantitative information on the unsteady dynamics of RBC and its membrane response to the imposition/cessation of external mechanical loads.


Assuntos
Membrana Eritrocítica , Eritrócitos , Módulo de Elasticidade , Elasticidade , Deformação Eritrocítica , Estresse Mecânico , Viscosidade
4.
Soft Matter ; 16(26): 6191-6205, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32567630

RESUMO

Computational Fluid Dynamics (CFD) is currently used to design and improve the hydraulic properties of biomedical devices, wherein the large scale blood circulation needs to be simulated by accounting for the mechanical response of red blood cells (RBCs) at the mesoscale. In many practical instances, biomedical devices work on time-scales comparable to the intrinsic relaxation time of RBCs: thus, a systematic understanding of the time-dependent response of erythrocyte membranes is crucial for the effective design of such devices. So far, this information has been deduced from experimental data, which do not necessarily adapt to the broad variety of fluid dynamic conditions that can be encountered in practice. This work explores the novel possibility of studying the time-dependent response of an erythrocyte membrane to external mechanical loads via mesoscale numerical simulations, with a primary focus on the detailed characterisation of the RBC relaxation time tc following the arrest of the external mechanical load. The adopted mesoscale model exploits a hybrid Immersed Boundary-Lattice Boltzmann Method (IB-LBM), coupled with the Standard Linear Solid (SLS) model to account for the RBC membrane viscosity. We underscore the key importance of the 2D membrane viscosity µm to correctly reproduce the relaxation time of the RBC membrane. A detailed assessment of the dependencies on the typology and strength of the applied mechanical loads is also provided. Overall, our findings open interesting future perspectives for the study of the non-linear response of RBCs immersed in time-dependent strain fields.


Assuntos
Deformação Eritrocítica , Eritrócitos , Viscosidade Sanguínea , Membrana Eritrocítica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA