Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 10: 102048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824994

RESUMO

Fugitive methane emissions from municipal solid waste landfills impact global climate change and reliable emissions quantification is of increasing importance. Ground-based cavity ring-down spectrometer (CRDS) measurements were used to determine methane concentrations and isotopic compositions of carbon in CH4. Then, CH4 oxidation through various cover materials was assessed using the Keeling plot method. A novel inverse modeling approach using Gaussian dispersion analysis, termed near-surface Gaussian plume estimation (NSGPE), was developed to predict whole-site landfill methane emissions. The concentration data obtained around the landfill perimeter with the mobile ground-based CRDS were used. Methane concentration data were integrated to parameterize discretized point source emissions from a Gaussian dispersion model. Post-processing algorithms were applied to refine modeling predictions to account for the influence of topographical and meteorological conditions on methane transport. Results indicate spatially resolved and consistent emissions estimates among multiple optimization simulations, with refinements increasing the resolution and spatial trends of emissions. Post-processing algorithms resolve consistent overestimation of emissions commonly observed using conventional Gaussian dispersion models.•Ground-based CRDS used to obtain methane concentration and oxidation data.•Novel inverse Gaussian dispersion modeling approach developed to predict methane emissions from landfills accounting for site-specific topography and meteorology.•Post-processing algorithms refine emissions estimates.

2.
Waste Manag ; 154: 146-159, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36242816

RESUMO

Methane flux and emissions were obtained at a California landfill concurrently using field measurements, inventory analyses, and modeling. Measured fluxes ranged from -3.7 to 828 g/m2-day and generally decreased from daily to intermediate to final covers. Soil covers with high-plasticity clay had the lowest fluxes. Whole-site emissions ranged from 406 to 47,414 tonnes/year (11,368 to 1,327,592 tonnes CO2-eq./year), and were dominated by intermediate covers with high relative surface area. Emissions estimates from flux chamber tests and California Landfill Methane Inventory Model (CALMIM) with oxidation were similar and low, whereas emissions from aerial measurements and CALMIM without oxidation were similar and high. The inventory analyses provided intermediate emissions and a new Gaussian plume model based on ground cavity ring-down spectrometer measurements provided the highest emissions. The assumptions used and the inherent strengths and limitations of the different approaches resulted in the flux and emissions differences. With varied attributes (experimental/modeling; flux/emissions; whole-site/cover-specific, top-down/bottom-up), the approaches provide envelopes of methane emissions and can be used selectively for the two main purposes of landfill methane emissions analysis: to mechanistically determine the factors that control/limit surface emissions and to provide data for atmospheric methane analysis. To reduce emissions, progression from temporary to permanent cover areas can be accelerated and covers with coarser materials can be amended with plastic fines.

3.
Sci Data ; 9(1): 361, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750672

RESUMO

Urban regions emit a large fraction of anthropogenic emissions of greenhouse gases (GHG) such as carbon dioxide (CO2) and methane (CH4) that contribute to modern-day climate change. As such, a growing number of urban policymakers and stakeholders are adopting emission reduction targets and implementing policies to reach those targets. Over the past two decades research teams have established urban GHG monitoring networks to determine how much, where, and why a particular city emits GHGs, and to track changes in emissions over time. Coordination among these efforts has been limited, restricting the scope of analyses and insights. Here we present a harmonized data set synthesizing urban GHG observations from cities with monitoring networks across North America that will facilitate cross-city analyses and address scientific questions that are difficult to address in isolation.

4.
Environ Sci Technol ; 54(15): 9254-9264, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633497

RESUMO

This study derives methane emission rates from 92 airborne observations collected over 23 facilities including 5 refineries, 10 landfills, 4 wastewater treatment plants (POTWs), 2 composting operations, and 2 dairies in the San Francisco Bay Area. Emission rates are measured using an airborne mass-balance technique from a low-flying aircraft. Annual measurement-based sectorwide methane emissions are 19,000 ± 2300 Mg for refineries, 136,700 ± 25,900 Mg for landfills, 11,900 ± 1,500 Mg for POTWs, and 11,100 ± 3,400 Mg for composting. The average of measured emissions for each refinery ranges from 4 to 23 times larger than the corresponding emissions reported to regulatory agencies, while measurement-derived landfill and POTW estimates are approximately twice the current inventory estimates. Significant methane emissions at composting facilities indicate that a California mandate to divert organics from landfills to composting may not be an effective measure for mitigating methane emissions unless best management practices are instituted at composting facilities. Complementary evidence from airborne remote sensing imagery indicates atmospheric venting from refinery hydrogen plants, landfill working surfaces, composting stockpiles, etc., to be among the specific source types responsible for the observed discrepancies. This work highlights the value of multiple measurement approaches to accurately estimate facility-scale methane emissions and perform source attribution at subfacility scales to guide and verify effective mitigation policy and action.


Assuntos
Poluentes Atmosféricos , Metano , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Metano/análise , São Francisco , Instalações de Eliminação de Resíduos
5.
Proc Natl Acad Sci U S A ; 109(45): 18318-23, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23091031

RESUMO

Emissions from gasoline and diesel vehicles are predominant anthropogenic sources of reactive gas-phase organic carbon and key precursors to secondary organic aerosol (SOA) in urban areas. Their relative importance for aerosol formation is a controversial issue with implications for air quality control policy and public health. We characterize the chemical composition, mass distribution, and organic aerosol formation potential of emissions from gasoline and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline exhaust. However, both sources are important for air quality; depending on a region's fuel use, diesel is responsible for 65% to 90% of vehicular-derived SOA, with substantial contributions from aromatic and aliphatic hydrocarbons. Including these insights on source characterization and SOA formation will improve regional pollution control policies, fuel regulations, and methodologies for future measurement, laboratory, and modeling studies.


Assuntos
Aerossóis/análise , Carbono/análise , Gasolina/análise , Compostos Orgânicos/análise , Emissões de Veículos/análise , Monóxido de Carbono/análise , Cromatografia Gasosa-Espectrometria de Massas , Peso Molecular , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...