Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 149: 109586, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670410

RESUMO

Recent research has highlighted complex and close interaction between miRNAs, autophagy, and viral infection. In this study, we observed the autophagy status in CIK cells infected with GCRV at various time points. We found that GCRV consistently induced cellar autophagy from 0 h to 12 h post infection. Subsequently, we performed deep sequencing on CIK cells infected with GCRV at 0 h and 12 h respectively, identifying 38 DEMs and predicting 9581 target genes. With the functional enrichment analyses of GO and KEGG, we identified 35 autophagy-related target genes of these DEMs, among which akt3 was pinpointed as the most central hub gene using module assay of the PPI network. Then employing the miRanda and Targetscan programs for prediction, and verification through a double fluorescent enzyme system and qPCR method, we confirmed that miR-193 b-3p could target the 3'-UTR of grass carp akt3, reducing its gene expression. Ultimately, we illustrated that grass carp miR-193 b-3p could promote autophagy in CIK cells. Above results collectively indicated that miRNAs might play a critical role in autophagy of grass carp during GCRV infection and contributed significantly to antiviral immunity by targeting autophagy-related genes. This study may provide new insights into the intricate mechanisms involved in virus, autophagy, and miRNAs.

2.
Fish Shellfish Immunol ; 149: 109573, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636742

RESUMO

This research elucidates the potential of Lycium barbarum residue (LBR), a by-product rich in bioactive substances, as a dietary supplement in aquaculture, especially for herbivorous fish like grass carp. In a detailed 120-day feeding trial, the impacts of varying LBR levels on juvenile grass carp were assessed, focusing on growth performance, survival rate, biochemical markers, and liver health. The study identified a 6% inclusion rate of LBR as optimal for enhancing survival and growth while mitigating hepatic lipid accumulation. Composition analysis of this diet revealed high concentrations of polysaccharides and flavonoids. Notably, the intake of LBR was found to enhance the antioxidant and immune-related enzymatic activities in the liver. Furthermore, it contributed to a reduction in hepatic fat deposition by decreasing the levels of triglycerides (TG) and total cholesterol (T-CHO) both in the liver and serum. Transcriptomic analysis of the liver highlighted LBR's substantial influence on lipid metabolism pathways, including the PPAR signaling pathway, primary bile acid biosynthesis, cholesterol metabolism, bile secretion, fat digestion and absorption, fatty acid degradation and fatty acid biosynthesis. Further, the expression level of genes pinpointed significant downregulation of fasn and dgat2, alongside upregulation of genes like pparda, cpt1b, cpt1ab and abca1b, in response to LBR supplementation. Overall, the findings present LBR as a promising enhancer of growth and survival in grass carp, with significant benefits in promoting fat metabolism and liver health, offering valuable insights for aquacultural nutrition strategies.

3.
Fish Shellfish Immunol ; 149: 109524, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38527657

RESUMO

Recent studies have increasingly linked miRNAs with the modulation of inflammatory responses and immunosuppressive activities. This investigation reveals that mir-30e-3p selectively binds to and modulates gimap8, as demonstrated by luciferase reporter assays and qPCR analyses. Upon LPS stimulation of CIK cells, mir-30e-3p expression was notably elevated, inversely correlating with a decrease in gimap8 mRNA levels. Overexpression of mir-30e-3p attenuated the mRNA levels of pro-inflammatory cytokines beyond the effect of LPS alone, suggesting a regulatory role of mir-30e-3p in inflammation mediated by the gimap8 gene. These insights contribute to our understanding of the complex mechanisms governing inflammatory and immune responses.

4.
Fish Shellfish Immunol ; 147: 109453, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365163

RESUMO

miRNAs are increasingly recognized for their crucial role in autophagy processes. Recent research has highlighted the significant function of autophagy in modulating immune responses. Within this context, specific miRNAs have been identified as indirect mediators of immune functions through their modulation of autophagy. In this study, we verified that miR-193b-5p simultaneously targeted the grass carp autophagy-related gene deptor, thereby reducing autophagy levels in CIK cells. Moreover, we found the expression levels of miR-193b-5p and deptor responding to pathogen infections in the GCRV-infected CIK cells. Notably, the overexpression of miR-193b-5p was found to induce the GCRV replication and reduce the irf3, irf7 and IFN1 expression. These findings also demonstrated that grass carp miR-193b-5p impacted the proliferation, migration, and antiapoptotic abilities of CIK cells. All the above results indicated that miR-193b-5p was linked to grass carp autophagy and played a vital role in antiviral immunity by targeting deptor. Our study may provide important insights into autophagy-related miRNAs and their roles in defense and immune mechanisms against pathogens in teleost.


Assuntos
Carpas , Doenças dos Peixes , MicroRNAs , Infecções por Reoviridae , Reoviridae , Animais , Reoviridae/fisiologia , Carpas/metabolismo , Autofagia , MicroRNAs/metabolismo , Proteínas de Peixes/genética
5.
Soft Matter ; 20(8): 1884-1891, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38321960

RESUMO

Self-assembly is one of the most important issues of fabricating materials with precise chiral nanostructures. Herein, we constructed a chiral assembly system from amphiphiles containing hydrophobic/hydrophilic chiral coils bonded to hexabiphenyl, exhibiting controllable enantioselectivity over various aggregation behaviors. The chiral coils aroused various steric hindrances affecting intrinsic stacking tendency and compactness, leading to different aggregating behaviors, as concluded from the self-assembly investigation. The strong π-π stacking interaction between the long hexabiphenyl groups gave rise to a relatively compact arrangement in the aqueous solution, whereas the methyl side groups on the coil segments raised steric hindrance at the rigid-flexible interface, resulting in loose stacking and formation of nanostructures with a larger curvature. Compared with the achiral molecule 1 that formed micron-sized large sheets, molecules 2-4 containing chiral coils aggregated into nanodishes, which looked exactly like mosquito-repellent incense, to overcome surface tension. The helical structures effectively amplified chirality and exhibited strong circular dichroism (CD) signals, which indicate enantioselectivity. In addition, the relatively loose packing behavior permitted their co-assembly with a dye and aided efficient energy transfer, providing a foundation for the chiral application of supramolecules. Thus, by introducing a simple methyl side group in amphiphilic molecules, asymmetric synthesis and energy transfer efficiency can be realized.

6.
Biology (Basel) ; 12(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759575

RESUMO

The process by which spermatogonial stem cells (SSCs) continuously go through mitosis, meiosis, and differentiation to produce gametes that transmit genetic information is known as spermatogenesis. Recapitulation of spermatogenesis in vitro is hindered by the challenge of collecting spermatogonial stem cells under long-term in vitro culture conditions. Coilia nasus is a commercially valuable anadromous migrant fish found in the Yangtze River in China. In the past few decades, exploitation and a deteriorating ecological environment have nearly caused the extinction of C. nasus's natural resources. In the present study, we established a stable spermatogonial stem cell line (CnSSC) from the gonadal tissue of the endangered species C. nasus. The cell line continued to proliferate and maintain stable cell morphology, a normal diploid karyotype, and gene expression patterns after more than one year of cell culture (>80 passages). Additionally, CnSSC cells could successfully differentiate into sperm cells through a coculture system. Therefore, the establishment of endangered species spermatogonial stem cell lines is a model for studying spermatogenesis in vitro and a feasible way to preserve germplasm resources.

7.
Fish Shellfish Immunol ; 142: 109124, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37777097

RESUMO

MicroRNAs (miRNAs) are integral to many biological functions, including autophagy, a process recently proven to be closely linked to innate immunity. In this study, we present findings on miR-22a, a teleost homolog of mammalian miR-22, illustrating its capacity to target the autophagy adaptor p62, subsequently inducing downregulation at both mRNA and protein levels. Utilizing Western blot analyses, we demonstrated that miR-22a inhibits the autophagy flux of CIK cells, correlated with an elevated presence of LC3 II. Additionally, the overexpression of miR-22a resulted in the suppression of NF-κB signaling, leading to reduced cellar antimicrobial abilities and increased apoptosis. These findings provide novel insights into the role of miR-22a as an autophagy-related miRNA and its immune mechanisms against pathogens via p62 in teleost, enriching our understanding of the interplay between autophagy and innate immunity.


Assuntos
Carpas , Doenças dos Peixes , MicroRNAs , Animais , Resistência à Doença , Proteína Sequestossoma-1/metabolismo , Carpas/genética , Carpas/metabolismo , Imunidade Inata/genética , MicroRNAs/genética , Autofagia , Proteínas de Peixes , Mamíferos/metabolismo
8.
Mar Biotechnol (NY) ; 25(5): 824-836, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610535

RESUMO

The ciliate protozoan Ichthyophthirius multifiliis is an essential parasite causing white spot disease in grass carp, leading to significant economic losses. Understanding the molecular basis of grass carp's response to I. multifiliis has important scientific and environmental values. The transcriptional network analysis offers a valuable strategy to decipher the changes in gene expression in grass carp infected with I. multifiliis. Our goal was to screen the genes and pathways involved in resistance to I. multifiliis in grass carp. The different traits exhibited by grass carp infected with I. multifiliis may be caused by the differences in gene expression among grass carp individuals. Herein, to reveal those resistance-associated genes against I. multifiliis infection, we performed RNA sequencing using weighted gene co-expression network analysis (WGCNA). The biological function analysis and hub gene annotation for highly relevant modules revealed that different pathogen recognition and clearance responses resulted in different resistance to I. multifiliis infection. Furthermore, gene enrichment analysis revealed that I. multifiliis invasion in the disease-resistant group mainly activated immune pathways, including scavenger receptor activity and kappa B kinase/NF-kappa B signaling. By the annotation of the highly correlated module of the hub gene, we revealed that the apoptosis and ribosome biogenesis-related genes were enriched in the disease-resistant grass carp. The results of the dark grey module showed that several genes were mainly enriched in the two-component system (ko02020) and steroid biosynthesis (ko00100), suggesting that they are resistance-associated and energy metabolism-associated genes. In the disease resistance group, hub genes mainly included Nlrc3, fos, AAP8, HAP2, HAX, cho2, and zgc:113,036. This study revealed the gene network associated with disease resistance after I. multifiliis infection. The disease resistance-related pathways and central genes identified in this study are candidate references for breeders breeding disease-resistant. The results of this study may also provide some references for the development of drugs to antagonize I. multifiliis infection.


Assuntos
Carpas , Infecções por Cilióforos , Doenças dos Peixes , Hymenostomatida , Humanos , Animais , Infecções por Cilióforos/genética , Infecções por Cilióforos/veterinária , Carpas/genética , Resistência à Doença/genética , Hymenostomatida/genética , Redes Reguladoras de Genes
9.
J Fish Dis ; 46(7): 743-749, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37186311

RESUMO

Cyprinid herpesvirus 2 (CyHV-2), the etiological agent of herpesvirus haematopoietic necrosis (HVHN) in carp and goldfish, has caused significant economic losses in the aquaculture industry. During viral infection, the host initiates a series of active or passive defences to regulate the process of virus infection. Apoptosis is a key component of active cellular defence, and members of the Bcl-2 family have been shown to play a critical role in the apoptotic process. However, the mechanism of action of the Bcl-2 family in inducing apoptosis during CyHV-2 infection remains unclear. In this study, we revealed the molecular mechanism of miRNA-mediated silver crucian carp BAX (ccBax) in CyHV-2-induced apoptosis for the first time and demonstrated that the overexpression of miR-124 suppressed ccBax expression and significantly down-regulated apoptosis in caudal fin cells of Carassius auratus gibelio (GiCF), while miR-124 inhibitors were the opposite. These studies indicated that miR-124 inhibits CyHV-2-induced apoptosis by reducing the expression of ccBax. Furthermore, the fact that transfection of miR-124 mimics promoted CyHV-2 replication, whereas miR-124 inhibitors inhibited CyHV-2 replication, indicated that miR-124 inhibited CyHV-2-induced apoptosis and contributed to viral replication. All these results suggested that miR-124 suppresses virus-induced apoptosis and promotes viral replication by targeting and regulating ccBax expression.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Carpas/genética , Infecções por Herpesviridae/veterinária , Proteína X Associada a bcl-2 , Herpesviridae/genética , Carpa Dourada/genética , Apoptose , Replicação Viral
10.
Front Microbiol ; 14: 1154840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143536

RESUMO

Introduction: Ribonucleotide reductase (RR) is essential for the replication of the double-stranded DNA virus CyHV-2 due to its ability to catalyze the conversion of ribonucleotides to deoxyribonucleotides, and is a potential target for the development of antiviral drugs to control CyHV-2 infection. Methods: Bioinformatic analysis was conducted to identify potential homologues of RR in CyHV-2. The transcription and translation levels of ORF23 and ORF141, which showed high homology to RR, were measured during CyHV-2 replication in GICF. Co-localization experiments and immunoprecipitation were performed to investigate the interaction between ORF23 and ORF141. siRNA interference experiments were conducted to evaluate the effect of silencing ORF23 and ORF141 on CyHV-2 replication. The inhibitory effect of hydroxyurea, a nucleotide reductase inhibitor, on CyHV-2 replication in GICF cells and RR enzymatic activity in vitro was also evaluated. Results: ORF23 and ORF141 were identified as potential viral ribonucleotide reductase homologues in CyHV-2, and their transcription and translation levels increased with CyHV-2 replication. Co-localization experiments and immunoprecipitation suggested an interaction between the two proteins. Simultaneous silencing of ORF23 and ORF141 effectively inhibited the replication of CyHV-2. Additionally, hydroxyurea inhibited the replication of CyHV-2 in GICF cells and the in vitro enzymatic activity of RR. Conclusion: These results suggest that the CyHV-2 proteins ORF23 and ORF141 function as viral ribonucleotide reductase and their function makes an effect to CyHV-2 replication. Targeting ribonucleotide reductase could be a crucial strategy for developing new antiviral drugs against CyHV-2 and other herpesviruses.

11.
Biomolecules ; 13(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36979395

RESUMO

Macrobrachium rosenbergii is an important aquaculture prawn that exhibits sexual dimorphism in growth, with males growing much faster than females. However, the mechanisms controlling these complex traits are not well understood. The nervous system plays an important role in regulating life functions. In the present work, we applied PacBio RNA-seq to obtain and characterize the full-length transcriptomes of the brains and thoracic ganglia of female and male prawns, and we performed comparative transcriptome analysis of female and male prawns. A total of 159.1-Gb of subreads were obtained with an average length of 2175 bp and 93.2% completeness. A total of 84,627 high-quality unigenes were generated and annotated with functional databases. A total of 6367 transcript factors and 6287 LncRNAs were predicted. In total, 5287 and 6211 significantly differentially expressed genes (DEGs) were found in the brain and thoracic ganglion, respectively, and confirmed by qRT-PCR. Of the 435 genes associated with protein processing pathways in the endoplasmic reticula, 42 DEGs were detected, and 21/26 DEGs with upregulated expression in the male brain/thoracic ganglion. The DEGs in this pathway are regulated by multiple LncRNAs in polypeptide folding and misfolded protein degradation in the different organs and sexes of the prawn. Our results provide novel theories and insights for studying the nervous system, sexual control, and growth dimorphism.


Assuntos
Palaemonidae , Penaeidae , RNA Longo não Codificante , Animais , Feminino , Masculino , Transcriptoma/genética , Palaemonidae/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Encéfalo , Gânglios
12.
Aquat Toxicol ; 256: 106422, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36773443

RESUMO

The environmental occurrence of nanoplastics (NPs) is now evident but their long-term impacts on organisms are unclear, limiting ecological and health risk assessment. We hypothesized that chronic exposure to low particle concentrations of NPs can result in gut-associated toxicity, and subsequently affect survival of fish. Japanese medaka Oryzias latipes were exposed to polystyrene NPs (diameter 100 nm; 0, 10, 104, and 106 items/L) for 3 months, and histopathology, digestive and antioxidant enzymes, immunity, intestinal permeability, gut microbiota, and mortality were assessed. NP exposures caused intestinal lesions, and increased intestinal permeability of the gut. The trypsin, lipase, and chymotrypsin activities were increased, but the amylase activity was decreased. Oxidative damage was reflected by the decreased superoxide dismutase and alkaline phosphatase and increased malondialdehyde, catalase, and lysozyme. The integrated biomarkers response index values of all NP-exposed medaka were significantly increased compared to the control group. Moreover, NP exposures resulted in a decrease of diversity and changed the intestinal microbiota composition. Our results provide new evidence that long-term NPs exposure impaired the health of fish at extremely low particle concentrations, suggesting the need for long-term toxicological studies resembling environmental particle concentrations when assessing the risk of NPs.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Estresse Oxidativo
13.
Vaccines (Basel) ; 12(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38250856

RESUMO

Cyprinid herpesvirus 2 (CyHV-2) is a pathogen that causes significant losses to the global aquaculture industry due to mass mortality in crucian carp and goldfish. This study demonstrates that the ORF55/ORF57 deletion mutants CyHV-2-Δ55-CP and CyHV-2-Δ57-CP obtained through homologous recombination replicate effectively within the caudal fin of Carassius auratus gibelio (GiCF) cells and exhibit morphologies similar to the CyHV-2 wild-type strain. Both mutants demonstrated a decrease in virulence, with CyHV-2-Δ57-CP exhibiting a more significant reduction. This serves as a reference for the subsequent development of recombinant attenuated vaccines against CyHV-2. Additionally, both mutants expressed the inserted RGNNV-CP (capsid protein of Redspotted grouper nervous necrosis virus) fusion protein gene, and inoculation with CyHV-2-Δ57-CP-infected GiCF cell lysates elicited an antibody response in the grouper. These results indicate that, while ORF55 and ORF57 genes of CyHV-2 are not required for viral replication in vitro, they do play a role in virulence in vivo. Additionally, expression of foreign protein in CyHV-2 suggests that the fully attenuated mutant of CyHV-2 could potentially function as a viral vector for developing subunit vaccines or multivalent recombinant attenuated vaccines.

14.
Biology (Basel) ; 11(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36290404

RESUMO

The hook snout carp Opsariichthys bidens is an important farmed fish in East Asia that shows sexual dimorphism in growth, with males growing faster and larger than females. To understand these complex traits and improve molecular breeding, chromosome-level genome assembly of male O. bidens was performed using Illumina, Nanopore, and Hi-C sequencing. The 992.9 Mb genome sequences with a contig N50 of 5.2 Mb were anchored to 38 chromosomes corresponding to male karyotypes. Of 30,922 functionally annotated genes, 97.5% of BUSCO genes were completely detected. Genome evolution analysis showed that the expanded and contracted gene families in the male O. bidens genome were enriched in 76 KEGG pathways, and 78 expanded genes were involved in the GnRH signaling pathway that regulates the synthesis and secretion of luteinizing hormone and glycoprotein hormones, further acting on male growth by inducing growth hormone. Compared to the released female O. bidens genome, the number of annotated genes in males was much higher (23,992). The male chromosome LG06 exhibited over 97% identity with the female GH14/GH38. Male-specific genes were identified for LG06, where structural variation, including deletions and insertions, occurred at a lower rate, suggesting a centric fusion of acrocentric chromosomes GH14 and GH38. The genome-synteny analysis uncovered significant inter-chromosome conservation between male O. bidens and grass carp, the former originating from ancestral chromosome breakage to increase the chromosome number. Our results provide a valuable genetic resource for studying the regulation of sexual dimorphism, sex-determining mechanisms, and molecular-guided breeding of O. bidens.

15.
Biology (Basel) ; 11(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-36101428

RESUMO

Coilia nasus is an important economic anadromous migratory fish of the Yangtze River in China. In recent years, overfishing and the deterioration of the ecological environment almost led to the extinction of the wild resources of C.nasus. Thus, there is an urgent need to protect this endangered fish. Recently, cell lines derived from fish have proven a promising tool for studying important aspects of aquaculture. In this study, a stable C. nasus gonadal somatic cell line (CnCSC) was established and characterized. After over one year of cell culture (>80 passages), this cell line kept stable growth. RT-PCR results revealed that the CnGSC expressed some somatic cell markers such as clu, fshr, hsd3ß, and sox9b instead of germ cell markers like dazl, piwi, and vasa. The strong phagocytic activity of CnGSC suggested that it contained a large number of Sertoli cells. Interestingly, CnGSC could induce medaka spermatogonial cells (SG3) to differentiate into elongated spermatids while co-cultured together. In conclusion, we established a C. nasus gonadal somatic cell line capable of sperm induction in vitro. This research provides scientific evidence for the long-term culture of a gonadal cell line from farmed fish, which would lay the foundation for exploring the regulatory mechanisms between germ cells and somatic cells in fish.

16.
Biology (Basel) ; 11(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36101449

RESUMO

Opsariichthys bidens belongs to the family Cyprinidae and is a small freshwater economic fish widely distributed in China. In recent years, the natural resources of O. bidens have been drastically reduced due to overfishing and the destruction of the water environment. The in vitro culture and long-term preservation of germ stem cells are the key technologies to keep genetic resources from degeneration. However, except for the establishment of the first long-term cultured medaka spermatogonia cell line (SSC) capable of producing sperm in vitro in 2004, no other long-term cultured SSC line has been found in other fish species. In this study, we successfully established another long-term-cultured spermatogonial stem cell line from Opsariichthys bidens (ObSSC). After more than 2 years of culture, ObSSC had a diploid karyotype and stable growth, with the typical gene expression patterns of SSC. Under in vitro culture, ObSSC could be induced to differentiate into sperm and other different types of somatic cells. In vivo, ObSSC could differentiate into different cells of three germ layers upon being transplanted into zebrafish embryos. Our research helps to explore the potential and regulation mechanism of fish SSC differentiation and spermatogenesis in vitro, provides a new way for solving the problem of fish genetic resource degradation and lays a foundation for further research on fish germ cell transplantation.

17.
Biology (Basel) ; 11(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36138775

RESUMO

MicroRNAs (miRNAs) are regarded as key regulators in gonadal development and sex determination in diverse organisms. However, the functions of miRNAs in gonads of Acrossocheilus fasciatus, an economically important freshwater species in the south of China, are still unclear. Here, high-throughput sequencing was performed to investigate the mRNA and miRNAs on gonads of A. fasciatus. In total, 49,447 unigenes were obtained, including 11,635 differentially expressed genes (DEGs), among which 4147 upregulated genes and 7488 downregulated genes in the testis compared to the ovary, while 300 (237 known, and 63 novel) miRNAs with 36 differentially expressed miRNAs (DEMs) were identified, from which 17 upregulated and 19 downregulated DEMs. GO and KEGG enrichment analysis were performed to analyze the potential biological functions of DEGs and DEMs. Using qRT-PCR, 9 sex-related genes and 9 miRNAs were selected to verify the sequencing data. By dual-luciferase reporter assay, miR-22a-5p and miR-22b-5p interaction with piwil1, and miR-10d-5p interaction with piwil2 were identified. These findings could provide a reference for miRNA-regulated sex control of A. fasciatus and may reveal new insights into aquaculture and breeding concepts.

18.
World J Clin Cases ; 10(25): 8932-8938, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36157644

RESUMO

BACKGROUND: Alagille syndrome (ALGS) is an autosomal dominant genetic disorder caused by mutations in the JAG1 or NOTCH2 gene. It is characterized by decreased intrahepatic bile ducts associated with a variety of abnormalities in many other organ systems, such as the cardiovascular, skeletal, and urinary systems. CASE SUMMARY: We report a rare case of ALGS. A 1-month-old male infant presented with sustained jaundice and had a rare congenital heart disease: Total anomalous pulmonary venous connection (TAPVC). Sustained jaundice, particularly with cardiac murmur, caught our attention. Laboratory tests revealed elevated levels of alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transpeptidase, total bilirubin, and total bile acids, indicating serious intrahepatic cholestasis. Imaging confirmed the presence of butterfly vertebra at the seventh thoracic vertebra. This suggested ALGS, which was confirmed by genetic testing with a c.3197dupC mutation in the JAG1 gene. Ursodiol was administered immediately after confirmation of the diagnosis, and cardiac surgery was performed when the patient was 1.5 month old. He recovered well after treatment and was discharged at the age of 3 mo. At the age of two years, the patient returned to our clinic because multiple cutaneous nodules with xanthomas appeared, and their size and number increased over time. CONCLUSION: We report a unique case of ALGS associated with TAPVC and severe xanthomas. This study has enriched the clinical manifestations of ALGS and emphasized the association between JAG1 gene and TAPVC.

19.
Front Genet ; 13: 990677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092927

RESUMO

Macrobrachium rosenbergii (M. rosenbergii), as a species of common prawn, is a delicacy that is consumed all over the world. By interacting with the target gene 3'-untranslated region (3'-UTR), microRNAs (miRNAs) regulate its expression and ultimately participate in the regulation of reproductive development. However, research focusing on miRNA regulation during gonadal development in M. rosenbergii received very little attention. To explore the association between miRNA and reproduction, we performed RNA sequencing (RNA-seq) on brain and gonad organs in male and female M. rosenbergii. A total of 494 miRNAs were obtained in RNA-seq, including 31 and 59 differentially expressed (DE) miRNAs in the brain and gonads, respectively. Furthermore, 9 DE miRNAs were randomly selected from the brain and gonads, and qRT-PCR was conducted to validate the results of RNA-seq. Interestingly, dpu-miR-133 was found to be substantially expressed in the male brain and testis but poorly expressed in the female brain, ovary, and other organs. Analysis of dpu-miR-133 by Targetscan and MiRanda predicted to target 5-HT1. Furthermore, the dual-luciferase reporter assay manifested that dpu-miR-133 can combine with 5-HT1. Overall, our research work provides basic data for further study on the miRNA-mediated regulation of brain, gonad, and reproductive development of study M. rosenbergii.

20.
Front Genet ; 13: 990683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118893

RESUMO

As an economically important fish, Opsariichthys bidens has obvious sexual dimorphism and strong reproductive capacity, but no epigenetics study can well explain its phenotypic variations. In recent years, many microRNAs involved in the regulation of reproductive development have been explored. In this study, the small RNA libraries of O. bidens on the testis and ovary were constructed and sequenced. A total of 295 known miRNAs were obtained and 100 novel miRNAs were predicted. By comparing testis and ovary libraries, 115 differentially expressed (DE) miRNAs were selected, of which 53 were up-regulated and 62 were down-regulated. A total of 64 GO items (padj < 0.01) and 206 KEGG pathways (padj < 0.01) were enriched in the target gene of miRNA. After that, the expression levels of nine DE miRNAs, including let-7a, miR-146b, miR-18c, miR-202-5p, miR-135c, miR-9-5p, miR-34c-3p, miR-460-5p and miR-338 were verified by qRT-PCR. Furthermore, bidirectional prediction of DE miRNAs and sex-related genes was carried out and the targeting correlation between miR-9-5p and nanos1 was verified by Dual-Luciferase reporter assay. Our findings identified the differentially expressed miRNA and paved the way to new possibilities for the follow-up study on the mechanism of miRNA-mRNA interaction in the gonads of O. bidens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...