Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Struct Mol Biol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658622

RESUMO

The PIWI-interacting RNA (piRNA) pathway is an adaptive defense system wherein piRNAs guide PIWI family Argonaute proteins to recognize and silence ever-evolving selfish genetic elements and ensure genome integrity. Driven by this intensive host-pathogen arms race, the piRNA pathway and its targeted transposons have coevolved rapidly in a species-specific manner, but how the piRNA pathway adapts specifically to target silencing in mammals remains elusive. Here, we show that mouse MILI and human HILI piRNA-induced silencing complexes (piRISCs) bind and cleave targets more efficiently than their invertebrate counterparts from the sponge Ephydatia fluviatilis. The inherent functional differences comport with structural features identified by cryo-EM studies of piRISCs. In the absence of target, MILI and HILI piRISCs adopt a wider nucleic-acid-binding channel and display an extended prearranged piRNA seed as compared with EfPiwi piRISC, consistent with their ability to capture targets more efficiently than EfPiwi piRISC. In the presence of target, the seed gate-which enforces seed-target fidelity in microRNA RISC-adopts a relaxed state in mammalian piRISC, revealing how MILI and HILI tolerate seed-target mismatches to broaden the target spectrum. A vertebrate-specific lysine distorts the piRNA seed, shifting the trajectory of the piRNA-target duplex out of the central cleft and toward the PAZ lobe. Functional analyses reveal that this lysine promotes target binding and cleavage. Our study therefore provides a molecular basis for the piRNA targeting mechanism in mice and humans, and suggests that mammalian piRNA machinery can achieve broad target silencing using a limited supply of piRNA species.

2.
Science ; 384(6694): eadf5489, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662826

RESUMO

Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.


Assuntos
Axonema , Centríolos , Cílios , Transtornos da Motilidade Ciliar , Tubulina (Proteína) , Animais , Humanos , Camundongos , Axonema/metabolismo , Centríolos/metabolismo , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Masculino , Feminino , Camundongos Knockout
3.
Cell ; 186(13): 2897-2910.e19, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37295417

RESUMO

Sperm motility is crucial for successful fertilization. Highly decorated doublet microtubules (DMTs) form the sperm tail skeleton, which propels the movement of spermatozoa. Using cryo-electron microscopy (cryo-EM) and artificial intelligence (AI)-based modeling, we determined the structures of mouse and human sperm DMTs and built an atomic model of the 48-nm repeat of the mouse sperm DMT. Our analysis revealed 47 DMT-associated proteins, including 45 microtubule inner proteins (MIPs). We identified 10 sperm-specific MIPs, including seven classes of Tektin5 in the lumen of the A tubule and FAM166 family members that bind the intra-tubulin interfaces. Interestingly, the human sperm DMT lacks some MIPs compared with the mouse sperm DMT. We also discovered variants in 10 distinct MIPs associated with a subtype of asthenozoospermia characterized by impaired sperm motility without evident morphological abnormalities. Our study highlights the conservation and tissue/species specificity of DMTs and expands the genetic spectrum of male infertility.


Assuntos
Inteligência Artificial , Infertilidade Masculina , Masculino , Humanos , Microscopia Crioeletrônica , Motilidade dos Espermatozoides/genética , Sêmen , Espermatozoides , Microtúbulos/metabolismo , Cauda do Espermatozoide/química , Cauda do Espermatozoide/metabolismo , Proteínas dos Microtúbulos/química , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo
4.
Nature ; 618(7965): 625-633, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258679

RESUMO

Motile cilia and flagella beat rhythmically on the surface of cells to power the flow of fluid and to enable spermatozoa and unicellular eukaryotes to swim. In humans, defective ciliary motility can lead to male infertility and a congenital disorder called primary ciliary dyskinesia (PCD), in which impaired clearance of mucus by the cilia causes chronic respiratory infections1. Ciliary movement is generated by the axoneme, a molecular machine consisting of microtubules, ATP-powered dynein motors and regulatory complexes2. The size and complexity of the axoneme has so far prevented the development of an atomic model, hindering efforts to understand how it functions. Here we capitalize on recent developments in artificial intelligence-enabled structure prediction and cryo-electron microscopy (cryo-EM) to determine the structure of the 96-nm modular repeats of axonemes from the flagella of the alga Chlamydomonas reinhardtii and human respiratory cilia. Our atomic models provide insights into the conservation and specialization of axonemes, the interconnectivity between dyneins and their regulators, and the mechanisms that maintain axonemal periodicity. Correlated conformational changes in mechanoregulatory complexes with their associated axonemal dynein motors provide a mechanism for the long-hypothesized mechanotransduction pathway to regulate ciliary motility. Structures of respiratory-cilia doublet microtubules from four individuals with PCD reveal how the loss of individual docking factors can selectively eradicate periodically repeating structures.


Assuntos
Axonema , Cílios , Transtornos da Motilidade Ciliar , Flagelos , Mecanotransdução Celular , Humanos , Masculino , Inteligência Artificial , Dineínas do Axonema/química , Dineínas do Axonema/metabolismo , Dineínas do Axonema/ultraestrutura , Axonema/química , Axonema/metabolismo , Axonema/ultraestrutura , Cílios/química , Cílios/metabolismo , Cílios/ultraestrutura , Microscopia Crioeletrônica , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestrutura , Microtúbulos/metabolismo , Chlamydomonas reinhardtii , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Transtornos da Motilidade Ciliar/fisiopatologia , Movimento , Conformação Proteica
5.
Cell ; 185(26): 4986-4998.e12, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563665

RESUMO

Intraflagellar transport (IFT) is the highly conserved process by which proteins are transported along ciliary microtubules by a train-like polymeric assembly of IFT-A and IFT-B complexes. IFT-A is sandwiched between IFT-B and the ciliary membrane, consistent with its putative role in transporting transmembrane and membrane-associated cargoes. Here, we have used single-particle analysis electron cryomicroscopy (cryo-EM) to determine structures of native IFT-A complexes. We show that subcomplex rearrangements enable IFT-A to polymerize laterally on anterograde IFT trains, revealing a cooperative assembly mechanism. Surprisingly, we discover that binding of IFT-A to IFT-B shields the preferred lipid-binding interface from the ciliary membrane but orients an interconnected network of ß-propeller domains with the capacity to accommodate diverse cargoes toward the ciliary membrane. This work provides a mechanistic basis for understanding IFT-train assembly and cargo interactions.


Assuntos
Cílios , Proteínas , Polimerização , Transporte Biológico , Cílios/metabolismo , Proteínas/metabolismo , Microtúbulos/metabolismo , Flagelos/metabolismo , Transporte Proteico
6.
Proc Natl Acad Sci U S A ; 119(41): e2207605119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191189

RESUMO

The cilium-centrosome complex contains triplet, doublet, and singlet microtubules. The lumenal surfaces of each microtubule within this diverse array are decorated by microtubule inner proteins (MIPs). Here, we used single-particle cryo-electron microscopy methods to build atomic models of two types of human ciliary microtubule: the doublet microtubules of multiciliated respiratory cells and the distal singlet microtubules of monoflagellated human spermatozoa. We discover that SPACA9 is a polyspecific MIP capable of binding both microtubule types. SPACA9 forms intralumenal striations in the B tubule of respiratory doublet microtubules and noncontinuous spirals in sperm singlet microtubules. By acquiring new and reanalyzing previous cryo-electron tomography data, we show that SPACA9-like intralumenal striations are common features of different microtubule types in animal cilia. Our structures provide detailed references to help rationalize ciliopathy-causing mutations and position cryo-EM as a tool for the analysis of samples obtained directly from ciliopathy patients.


Assuntos
Ciliopatias , Sêmen , Animais , Axonema/metabolismo , Ciliopatias/metabolismo , Microscopia Crioeletrônica , Humanos , Masculino , Proteínas dos Microtúbulos/química , Proteínas dos Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas , Sêmen/metabolismo
7.
Nat Struct Mol Biol ; 29(5): 483-492, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35578023

RESUMO

A pair of extensively modified microtubules form the central apparatus (CA) of the axoneme of most motile cilia, where they regulate ciliary motility. The external surfaces of both CA microtubules are patterned asymmetrically with large protein complexes that repeat every 16 or 32 nm. The composition of these projections and the mechanisms that establish asymmetry and longitudinal periodicity are unknown. Here, by determining cryo-EM structures of the CA microtubules, we identify 48 different CA-associated proteins, which in turn reveal mechanisms for asymmetric and periodic protein binding to microtubules. We identify arc-MIPs, a novel class of microtubule inner protein, that bind laterally across protofilaments and remodel tubulin structure and lattice contacts. The binding mechanisms utilized by CA proteins may be generalizable to other microtubule-associated proteins. These structures establish a foundation to elucidate the contributions of individual CA proteins to ciliary motility and ciliopathies.


Assuntos
Axonema , Microtúbulos , Axonema/metabolismo , Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
8.
Medicine (Baltimore) ; 101(2): e28503, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35029203

RESUMO

BACKGROUND: Knee osteoarthritis (KOA) is a degenerative disease in the knee joint, with chronic joint pain, swelling, stiffness, and dysfunction as the primary manifestations. Sinomenine hydrochloride injection is a proprietary Chinese medicine injection of sinomenine, the main active component of traditional Chinese medicine (TCM). Clinical studies show that Sinomenine hydrochloride injection has a good effect on the treatment of KOA. At present, there is still a lack of systematic reviews and meta-analyses to evaluate the efficacy and safety of sinomenine hydrochloride injection in the treatment of KOA. Our purpose is to supplement this deficiency. METHODS: Randomized controlled trials of sinomenine hydrochloride injection in the treatment of KOA were searched for Eight electronic resource databases. We will use Review Manager 5.3 software for heterogeneity assessment, meta-analysis, and subgroup analysis. We will use the Cochrane Manual to assess the quality of the included studies, and use reporting biases assessment and sensitivity analysis to evaluate the reliability and stability of the results. RESULTS: This study will provide a high-quality synthesis to assess the efficacy and safety of sinomenine hydrochloride injection in the treatment of KOA. CONCLUSION: This systematic review evaluates the efficacy and safety of sinomenine hydrochloride injection in the treatment of KOA. INPLASY REGISTRATION NUMBER: INPLASY2021110057.


Assuntos
Morfinanos/uso terapêutico , Osteoartrite do Joelho , Humanos , Metanálise como Assunto , Osteoartrite do Joelho/tratamento farmacológico , Reprodutibilidade dos Testes , Revisões Sistemáticas como Assunto
9.
Artigo em Inglês | MEDLINE | ID: mdl-35096105

RESUMO

BACKGROUND: Zhengqing Fengtongning release tablet (ZQFTN) is a proprietary Chinese medicine preparation of sinomenine, the main active component of the traditional Chinese medicine (TCM) Sinomenium acutum. It is used in China as a complementary and alternative medicine (CAM) for knee osteoarthritis (KOA). The objective of this study was to evaluate the clinical efficacy and safety of ZQFTN in KOA treatment. METHOD: Randomized controlled trials of ZQFTN in KOA treatment were searched in PubMed, Cochrane Library, China National Knowledge Infrastructure, Chinese Scientific Journals Database, and Wanfang database. Two reviewers independently conducted the screening, extracted the data, and assessed the methodological quality. Statistical analysis was performed using RevMan 5.3 software. RESULTS: Eighteen studies were assessed that included 1512 participants (757 in the treatment group and 755 in the control group). The results showed that compared with the control group, the Visual Analogue Scale (standardized mean difference (SMD) = -0.87, 95% confidence interval (CI): [-1.08, -0.66], P < 0.001), Western Ontario and Mc Master University (WOMAC) Osteoarthritis Index pain score (SMD = -0.67, 95% CI: [-0.88, -0.46], P < 0.001), WOMAC stiffness score (SMD = -0.53, 95% CI: [-0.86, -0.20], P=0.001), WOMAC function score (SMD = -0.76, 95% CI: [-0.97, -0.55], P < 0.001), serum interleukin-1ß level (SMD = -4.36, 95% CI: [-6.41, -2.31], P < 0.001), and serum tumor necrosis factor-α level (SMD = -8.45, 95% CI: [-11.20, -5.69], P < 0.001) of the ZQFTN treatment group were lower, and the total effective rate was higher relative risk (RR = 1.15, 95% CI [1.07, 1.23], P < 0.001). There was no significant difference in the incidence of adverse reactions between the two groups (RR = 0.96, 95% CI: [0.69, 1.35], P=0.82). CONCLUSION: ZQFTN can effectively relieve knee pain, morning stiffness, and daily activity function disorders, reduce the expression of inflammatory factors in serum, and improve the total clinical response rate without increasing the incidence of adverse reactions. Therefore, ZQFTN has considerable potential as a CAM for KOA. However, due to the limitation of the quality of the included studies, the strength of this conclusion is affected. In the next step, multicenter, large sample, high-quality randomized controlled studies are needed to further confirm the present conclusion.

10.
Cell ; 184(23): 5791-5806.e19, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34715025

RESUMO

Dynein-decorated doublet microtubules (DMTs) are critical components of the oscillatory molecular machine of cilia, the axoneme, and have luminal surfaces patterned periodically by microtubule inner proteins (MIPs). Here we present an atomic model of the 48-nm repeat of a mammalian DMT, derived from a cryoelectron microscopy (cryo-EM) map of the complex isolated from bovine respiratory cilia. The structure uncovers principles of doublet microtubule organization and features specific to vertebrate cilia, including previously unknown MIPs, a luminal bundle of tektin filaments, and a pentameric dynein-docking complex. We identify a mechanism for bridging 48- to 24-nm periodicity across the microtubule wall and show that loss of the proteins involved causes defective ciliary motility and laterality abnormalities in zebrafish and mice. Our structure identifies candidate genes for diagnosis of ciliopathies and provides a framework to understand their functions in driving ciliary motility.


Assuntos
Cílios/ultraestrutura , Microscopia Crioeletrônica , Mamíferos/metabolismo , Proteínas/metabolismo , Proteínas/ultraestrutura , Sequência de Aminoácidos , Animais , Bovinos , Cílios/metabolismo , Dineínas/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Proteínas dos Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Mutação/genética , Traqueia/anatomia & histologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Nat Struct Mol Biol ; 28(3): 258-267, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33633398

RESUMO

G-protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane proteins and the targets of over 30% of currently marketed pharmaceuticals. Although several structures have been solved for GPCR-G protein complexes, few are in a lipid membrane environment. Here, we report cryo-EM structures of complexes of neurotensin, neurotensin receptor 1 and Gαi1ß1γ1 in two conformational states, resolved to resolutions of 4.1 and 4.2 Å. The structures, determined in a lipid bilayer without any stabilizing antibodies or nanobodies, reveal an extended network of protein-protein interactions at the GPCR-G protein interface as compared to structures obtained in detergent micelles. The findings show that the lipid membrane modulates the structure and dynamics of complex formation and provide a molecular explanation for the stronger interaction between GPCRs and G proteins in lipid bilayers. We propose an allosteric mechanism for GDP release, providing new insights into the activation of G proteins for downstream signaling.


Assuntos
Microscopia Crioeletrônica , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/ultraestrutura , Bicamadas Lipídicas , Nanoestruturas/química , Receptores de Neurotensina/metabolismo , Receptores de Neurotensina/ultraestrutura , Regulação Alostérica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/ultraestrutura , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/ultraestrutura , Guanosina Difosfato/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/química , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Micelas , Modelos Moleculares , Neurotensina/química , Neurotensina/metabolismo , Conformação Proteica , Receptores de Neurotensina/química , Transdução de Sinais
12.
Nat Struct Mol Biol ; 28(1): 29-37, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33318703

RESUMO

In motile cilia, a mechanoregulatory network is responsible for converting the action of thousands of dynein motors bound to doublet microtubules into a single propulsive waveform. Here, we use two complementary cryo-EM strategies to determine structures of the major mechanoregulators that bind ciliary doublet microtubules in Chlamydomonas reinhardtii. We determine structures of isolated radial spoke RS1 and the microtubule-bound RS1, RS2 and the nexin-dynein regulatory complex (N-DRC). From these structures, we identify and build atomic models for 30 proteins, including 23 radial-spoke subunits. We reveal how mechanoregulatory complexes dock to doublet microtubules with regular 96-nm periodicity and communicate with one another. Additionally, we observe a direct and dynamically coupled association between RS2 and the dynein motor inner dynein arm subform c (IDAc), providing a molecular basis for the control of motor activity by mechanical signals. These structures advance our understanding of the role of mechanoregulation in defining the ciliary waveform.


Assuntos
Chlamydomonas reinhardtii/anatomia & histologia , Cílios/metabolismo , Locomoção/fisiologia , Proteínas de Plantas/metabolismo , Axonema/metabolismo , Fenômenos Biomecânicos/fisiologia , Microscopia Crioeletrônica , Proteínas do Citoesqueleto/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Transdução de Sinais/fisiologia , Nexinas de Classificação/metabolismo
13.
PLoS Pathog ; 16(11): e1009062, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253316

RESUMO

The hemagglutinin (HA) glycoproteins of influenza viruses play a key role in binding host cell receptors and in mediating virus-host cell membrane fusion during virus infection. Upon virus entry, HA is triggered by low pH and undergoes large structural rearrangements from a prefusion state to a postfusion state. While structures of prefusion state and postfusion state of HA have been reported, the intermediate structures remain elusive. Here, we report two distinct low pH intermediate conformations of the influenza virus HA using cryo-electron microscopy (cryo-EM). Our results show that a decrease in pH from 7.8 to 5.2 triggers the release of fusion peptides from the binding pockets and then causes a dramatic conformational change in the central helices, in which the membrane-proximal ends of the central helices unwind to an extended form. Accompanying the conformational changes of the central helices, the stem region of the HA undergoes an anticlockwise rotation of 9.5 degrees and a shift of 15 Å. The HA head, after being stabilized by an antibody, remains unchanged compared to the neutral pH state. Thus, the conformational change of the HA stem region observed in our research is likely to be independent of the HA head. These results provide new insights into the structural transition of HA during virus entry.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Influenza Humana/virologia , Orthomyxoviridae/fisiologia , Microscopia Crioeletrônica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Fusão de Membrana , Modelos Moleculares , Conformação Proteica , Internalização do Vírus
14.
Elife ; 92020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31939736

RESUMO

Bardet-Biedl syndrome (BBS) is a currently incurable ciliopathy caused by the failure to correctly establish or maintain cilia-dependent signaling pathways. Eight proteins associated with BBS assemble into the BBSome, a key regulator of the ciliary membrane proteome. We report the electron cryomicroscopy (cryo-EM) structures of the native bovine BBSome in inactive and active states at 3.1 and 3.5 Å resolution, respectively. In the active state, the BBSome is bound to an Arf-family GTPase (ARL6/BBS3) that recruits the BBSome to ciliary membranes. ARL6 recognizes a composite binding site formed by BBS1 and BBS7 that is occluded in the inactive state. Activation requires an unexpected swiveling of the ß-propeller domain of BBS1, the subunit most frequently implicated in substrate recognition, which widens a central cavity of the BBSome. Structural mapping of disease-causing mutations suggests that pathogenesis results from folding defects and the disruption of autoinhibition and activation.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Membrana/metabolismo , Animais , Síndrome de Bardet-Biedl/metabolismo , Bovinos , Cílios/metabolismo , Microscopia Crioeletrônica , Humanos , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Transporte Proteico
15.
Nat Commun ; 10(1): 2366, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147544

RESUMO

The mature virion of the tailed bacteriophage ϕ29 is an ~33 MDa complex that contains more than 450 subunits of seven structural proteins assembling into a prolate head and a short non-contractile tail. Here, we report the near-atomic structures of the ϕ29 pre-genome packaging head (prohead), the mature virion and the genome-emptied virion. Structural comparisons suggest local rotation or oscillation of the head-tail connector upon DNA packaging and release. Termination of the DNA packaging occurs through pressure-dependent correlative positional and conformational changes in the connector. The funnel-shaped tail lower collar attaches the expanded narrow end of the connector and has a 180-Å long, 24-strand ß barrel narrow stem tube that undergoes conformational changes upon genome release. The appendages form an interlocked assembly attaching the tail around the collar. The membrane active long loops at the distal end of the tail knob exit during the late stage of infection and form the cone-shaped tip of a largely hydrophobic helix barrel, prepared for membrane penetration.


Assuntos
Fagos Bacilares/ultraestrutura , Bacillus subtilis , Vírion/ultraestrutura , Microscopia Crioeletrônica , Empacotamento do DNA
16.
PLoS Pathog ; 14(8): e1007236, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102747

RESUMO

The trimeric SARS coronavirus (SARS-CoV) surface spike (S) glycoprotein consisting of three S1-S2 heterodimers binds the cellular receptor angiotensin-converting enzyme 2 (ACE2) and mediates fusion of the viral and cellular membranes through a pre- to postfusion conformation transition. Here, we report the structure of the SARS-CoV S glycoprotein in complex with its host cell receptor ACE2 revealed by cryo-electron microscopy (cryo-EM). The complex structure shows that only one receptor-binding domain of the trimeric S glycoprotein binds ACE2 and adopts a protruding "up" conformation. In addition, we studied the structures of the SARS-CoV S glycoprotein and its complexes with ACE2 in different in vitro conditions, which may mimic different conformational states of the S glycoprotein during virus entry. Disassociation of the S1-ACE2 complex from some of the prefusion spikes was observed and characterized. We also characterized the rosette-like structures of the clustered SARS-CoV S2 trimers in the postfusion state observed on electron micrographs. Structural comparisons suggested that the SARS-CoV S glycoprotein retains a prefusion architecture after trypsin cleavage into the S1 and S2 subunits and acidic pH treatment. However, binding to the receptor opens up the receptor-binding domain of S1, which could promote the release of the S1-ACE2 complex and S1 monomers from the prefusion spike and trigger the pre- to postfusion conformational transition.


Assuntos
Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Receptores Virais/química , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2 , Microscopia Crioeletrônica , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Síndrome Respiratória Aguda Grave/virologia , Internalização do Vírus
17.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-771437

RESUMO

OBJECTIVE@#To elucidate the action mechanism of Xingnaojing Injection (, XNJI) for sepsis, and to target screen the potential bioactive ingredients.@*METHODS@#An integrated protocol that combines in silico target screen (molecular docking) and database mapping was employed to find the potential inhibitors from XNJI for the sepsis-related targets and to establish the compound-target (C-T) interaction network. The XNJI's bioactive components database was investigated and the sepsis-associated targets were comprehensively constructed; the 3D structure of adenosine receptor A2a and 5-lipoxygenase proteins were established and evaluated with homology modeling method; system network pharmacology for sepsis treatment was studied between the bioactive ingredients and the sepsis targets using computational biology methods to distinguish inhibitors from non inhibitors for the selected sepsis-related targets and C-T network construction.@*RESULTS@#Multiple bioactive compounds in the XNJI were found to interact with multiple sepsis targets. The 32 bioactive ingredients were generated from XNJI in pharmacological system, and 21 potential targets were predicted to the sepsis disease; the biological activities for some potential inhibitors had been experimentally confirmed, highlighting the reliability of in silico target screen. Further integrated C-T network showed that these bioactive components together probably display synergistic action for sepsis treatment.@*CONCLUSIONS@#The uncovered mechanism may offer a superior insight for understanding the theory of the Chinese herbal medicine for combating sepsis. Moreover, the potential inhibitors for the sepsis-related targets may provide a good source to find new lead compounds against sepsis disease.


Assuntos
Humanos , Araquidonato 5-Lipoxigenase , Metabolismo , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas , Química , Farmacologia , Usos Terapêuticos , Injeções , Compostos Fitoquímicos , Usos Terapêuticos , Receptor A2A de Adenosina , Metabolismo , Reprodutibilidade dos Testes , Sepse , Tratamento Farmacológico , Metabolismo
19.
Cell Res ; 27(1): 119-129, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28008928

RESUMO

The global outbreak of SARS in 2002-2003 was caused by the infection of a new human coronavirus SARS-CoV. The infection of SARS-CoV is mediated mainly through the viral surface glycoproteins, which consist of S1 and S2 subunits and form trimer spikes on the envelope of the virions. Here we report the ectodomain structures of the SARS-CoV surface spike trimer in different conformational states determined by single-particle cryo-electron microscopy. The conformation 1 determined at 4.3 Å resolution is three-fold symmetric and has all the three receptor-binding C-terminal domain 1 (CTD1s) of the S1 subunits in "down" positions. The binding of the "down" CTD1s to the SARS-CoV receptor ACE2 is not possible due to steric clashes, suggesting that the conformation 1 represents a receptor-binding inactive state. Conformations 2-4 determined at 7.3, 5.7 and 6.8 Å resolutions are all asymmetric, in which one RBD rotates away from the "down" position by different angles to an "up" position. The "up" CTD1 exposes the receptor-binding site for ACE2 engagement, suggesting that the conformations 2-4 represent a receptor-binding active state. This conformational change is also required for the binding of SARS-CoV neutralizing antibodies targeting the CTD1. This phenomenon could be extended to other betacoronaviruses utilizing CTD1 of the S1 subunit for receptor binding, which provides new insights into the intermediate states of coronavirus pre-fusion spike trimer during infection.


Assuntos
Microscopia Crioeletrônica , Receptores de Superfície Celular/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/ultraestrutura , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Anticorpos Neutralizantes/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-335840

RESUMO

Our preliminary study showed that the total flavonoids in Isodon amethystoides(TFIA), a local medicinal herb in Suzhou, had a certain therapeutic effect on adjuvant arthritis, and this therapeutic effect may be achieved through the up-regulation of miR-152 expression. In this paper, the molecular mechanism of TFIA on the pathogenesis of adjuvant arthritis(AA) rats was further studied. AA rats were prepared with complete Freund's adjuvant, and then treated with TFIA by intragastric administration. Real-time qPCR was used to detect the effects of TFIA on the negative regulatory loop of miR-152, methylase DNMT1 and methyl-CpG binding protein MeCP2 in fibroblast like synoviocytes(FLS) of AA rats, as well as the effects of TFIA on the classic Wnt signaling pathway and the expression of fibronectin gene in AA rats. Intragastric administration of TFIA significantly inhibited the expression of DNMT1 and reversed the negative regulatory loop composed of miR-152, DNMT1 and MeCP2 in the pathology of AA rats. After transfection of miR-152 inhibitors into the FLS in treatment group, DNMT1 expression was significantly restored. TFIA significantly up-regulated the expression of SFRP4 and inhibited the expression of β-catenin, C-myc and ccnd1, the key genes of canonical Wnt signaling pathway. TFIA also significantly inhibited the expression of fibronectin, an AA gene. The effect of TFIA on the expression of SFRP4, β-catenin, C-myc, ccnd1 and fibronectin was reversed after transfection with miR-152 inhibitors in the treatment group FLS. TFIA may inhibit the DNMT1 expression, up-regulate the SFRP4 expression, inhibit the expression of classical Wnt signaling genes β-catenin, C-myc, and ccnd1 as well as the RA gene fibronectin expression through the up-regulation of miR-152 expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...