Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Microbiol ; 20(6): e12850, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29624823

RESUMO

Cyclic ß-1,2-D-glucans (CßG) are natural bionanopolymers present in the periplasmic space of many Proteobacteria. These molecules are sugar rings made of 17 to 25 D-glucose units linked exclusively by ß-1,2-glycosidic bonds. CßG are important for environmental sensing and osmoadaptation in bacteria, but most importantly, they play key roles in complex host-cell interactions such as symbiosis, pathogenesis, and immunomodulation. In the last years, the identification and characterisation of the enzymes involved in the synthesis of CßG allowed to know in detail the steps necessary for the formation of these sugar rings. Due to its peculiar structure, CßG can complex large hydrophobic molecules, a feature possibly related to its function in the interaction with the host. The capabilities of the CßG to function as molecular boxes and to solubilise hydrophobic compounds are attractive for application in the development of drugs, in food industry, nanotechnology, and chemistry. More importantly, its excellent immunomodulatory properties led to the proposal of CßG as a new class of adjuvants for vaccine development.


Assuntos
Interações Hospedeiro-Patógeno , Proteobactérias/fisiologia , Proteobactérias/patogenicidade , Simbiose , beta-Glucanas/química , beta-Glucanas/metabolismo , Vias Biossintéticas , Interações Hidrofóbicas e Hidrofílicas
2.
Glycobiology ; 26(10): 1086-1096, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27053576

RESUMO

The ß1,2-glucans produced by bacteria are important in invasion, survival and immunomodulation in infected hosts be they mammals or plants. However, there has been a lack of information on proteins which recognize these molecules. This is partly due to the extremely limited availability of the sequence-defined oligosaccharides and derived probes for use in the study of their interactions. Here we have used the cyclic ß1,2-glucan (CßG) of the bacterial pathogen Brucella abortus, after removal of succinyl side chains, to prepare linearized oligosaccharides which were used to generate microarrays. We describe optimized conditions for partial depolymerization of the cyclic glucan by acid hydrolysis and conversion of the ß1,2-gluco-oligosaccharides, with degrees of polymerization 2-13, to neoglycolipids for the purpose of generating microarrays. By microarray analyses, we show that the C-type lectin receptor DC-SIGNR, like the closely related DC-SIGN we investigated earlier, binds to the ß1,2-gluco-oligosaccharides, as does the soluble immune effector serum mannose-binding protein. Exploratory studies with DC-SIGN are suggestive of the recognition also of the intact CßG by this receptor. These findings open the way to unravelling mechanisms of immunomodulation mediated by ß1,2-glucans in mammalian systems.


Assuntos
Brucella abortus/química , Lectinas Tipo C/química , Lectinas Tipo C/imunologia , Sondas Moleculares/análise , Sondas Moleculares/imunologia , Oligossacarídeos/análise , Oligossacarídeos/biossíntese , Brucella abortus/imunologia , Sistema Imunitário/imunologia , Análise em Microsséries , Oligossacarídeos/imunologia
3.
J Bacteriol ; 197(9): 1640-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733613

RESUMO

UNLABELLED: Cyclic ß-1,2-glucans (CßG) are periplasmic homopolysaccharides that play an important role in the virulence and interaction of Brucella with the host. Once synthesized in the cytoplasm by the CßG synthase (Cgs), CßG are transported to the periplasm by the CßG transporter (Cgt) and succinylated by the CßG modifier enzyme (Cgm). Here, we used a bacterial two-hybrid system and coimmunoprecipitation techniques to study the interaction network between these three integral inner membrane proteins. Our results indicate that Cgs, Cgt, and Cgm can form both homotypic and heterotypic interactions. Analyses carried out with Cgs mutants revealed that the N-terminal region of the protein (Cgs region 1 to 418) is required to sustain the interactions with Cgt and Cgm as well as with itself. We demonstrated by single-cell fluorescence analysis that in Brucella, Cgs and Cgt are focally distributed in the membrane, particularly at the cell poles, whereas Cgm is mostly distributed throughout the membrane with a slight accumulation at the poles colocalizing with the other partners. In summary, our results demonstrate that Cgs, Cgt, and Cgm form a membrane-associated biosynthetic complex. We propose that the formation of a membrane complex could serve as a mechanism to ensure the fidelity of CßG biosynthesis by coordinating their synthesis with the transport and modification. IMPORTANCE: In this study, we analyzed the interaction and localization of the proteins involved in the synthesis, transport, and modification of Brucella abortus cyclic ß-1,2-glucans (CßG), which play an important role in the virulence and interaction of Brucella with the host. We demonstrate that these proteins interact, forming a complex located mainly at the cell poles; this is the first experimental evidence of the existence of a multienzymatic complex involved in the metabolism of osmoregulated periplasmic glucans in bacteria and argues for another example of pole differentiation in Brucella. We propose that the formation of this membrane complex could serve as a mechanism to ensure the fidelity of CßG biosynthesis by coordinating synthesis with the transport and modification.


Assuntos
Brucella abortus/genética , Brucella abortus/metabolismo , Proteínas de Membrana/metabolismo , Multimerização Proteica , Succinatos/metabolismo , beta-Glucanas/metabolismo , Imunoprecipitação , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
4.
Mol Cell Proteomics ; 14(4): 974-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25670804

RESUMO

Glucans are polymers of d-glucose with differing linkages in linear or branched sequences. They are constituents of microbial and plant cell-walls and involved in important bio-recognition processes, including immunomodulation, anticancer activities, pathogen virulence, and plant cell-wall biodegradation. Translational possibilities for these activities in medicine and biotechnology are considerable. High-throughput micro-methods are needed to screen proteins for recognition of specific glucan sequences as a lead to structure-function studies and their exploitation. We describe construction of a "glucome" microarray, the first sequence-defined glycome-scale microarray, using a "designer" approach from targeted ligand-bearing glucans in conjunction with a novel high-sensitivity mass spectrometric sequencing method, as a screening tool to assign glucan recognition motifs. The glucome microarray comprises 153 oligosaccharide probes with high purity, representing major sequences in glucans. Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation was used for complete linkage analysis of gluco-oligosaccharides in linear "homo" and "hetero" and branched sequences. The system is validated using antibodies and carbohydrate-binding modules known to target α- or ß-glucans in different biological contexts, extending knowledge on their specificities, and applied to reveal new information on glucan recognition by two signaling molecules of the immune system against pathogens: Dectin-1 and DC-SIGN. The sequencing of the glucan oligosaccharides by the MS method and their interrogation on the microarrays provides detailed information on linkage, sequence and chain length requirements of glucan-recognizing proteins, and are a sensitive means of revealing unsuspected sequences in the polysaccharides.


Assuntos
Glucanos/metabolismo , Análise Serial de Proteínas/métodos , Proteoma/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Anticorpos/metabolismo , Sequência de Carboidratos , Moléculas de Adesão Celular/metabolismo , Sistema Imunitário/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Camundongos , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Vacinas/imunologia
5.
Vet Microbiol ; 172(3-4): 455-65, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-24984948

RESUMO

Brucellosis is a highly contagious zoonosis that affects livestock and human beings. Laboratory diagnosis of bovine brucellosis mainly relies on serological diagnosis using serum and/or milk samples. Although there are several serological tests with different diagnostic performance and capacity to differentiate vaccinated from infected animals, there is still no standardized reference antigen for the disease. Here we validate the first recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide-protein conjugate (OAg-AcrA), for diagnosis of bovine brucellosis. This antigen can be produced in homogeneous batches without the need of culturing pathogenic brucellae; all characteristics that make it appropriate for standardization. An indirect immunoassay based on the detection of anti O-polysaccharide IgG antibodies in bovine samples was developed coupling OAg-AcrA to magnetic beads or ELISA plates. As a proof of concept and to validate the antigen, we analyzed serum, whole blood and milk samples obtained from non-infected, experimentally infected and vaccinated animals included in a vaccination/infection trial performed in our laboratory as well as more than 1000 serum and milk samples obtained from naturally infected and S19-vaccinated animals from Argentina. Our results demonstrate that OAg-AcrA-based assays are highly accurate for diagnosis of bovine brucellosis, even in vaccinated herds, using different types of samples and in different platforms. We propose this novel recombinant glycoprotein as an antigen suitable for the development of new standard immunological tests for screening and confirmatory diagnosis of bovine brucellosis in regions or countries with brucellosis-control programs.


Assuntos
Antígenos de Bactérias/imunologia , Brucella/imunologia , Brucelose Bovina/diagnóstico , Glicoproteínas/imunologia , Animais , Vacinas Bacterianas/imunologia , Brucelose Bovina/prevenção & controle , Bovinos , Técnica Indireta de Fluorescência para Anticorpo/métodos , Técnica Indireta de Fluorescência para Anticorpo/veterinária , Humanos , Leite/imunologia , Leite/virologia , Engenharia de Proteínas , Proteínas Recombinantes , Reprodutibilidade dos Testes , Testes Sorológicos/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...