Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(8): 6070-6087, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35417652

RESUMO

Targeting the kinases MNK1 and MNK2 has emerged as a valuable strategy in oncology. However, most of the advanced inhibitors are acting in an adenosine triphosphate (ATP)-competitive mode, precluding the evaluation of different binding modes in preclinical settings. Using rational design, we identified and validated the 4,6-diaryl-pyrazolo[3,4-b]pyridin-3-amine scaffold as the core for MNK inhibitors. Signaling pathway analysis confirmed a direct effect of the hit compound EB1 on MNKs, and in line with the reported function of these kinases, EB1 only affects the growth of tumor but not normal cells. Molecular modeling revealed the binding of EB1 to the inactive conformation of MNK1 and the interaction with the specific DFD motif. This novel mode of action appears to be superior to the ATP-competitive inhibitors, which render the protein in a pseudo-active state. Overcoming this paradoxical activation of MNKs by EB1 represents therefore a promising starting point for the development of a novel generation of MNK inhibitors.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Trifosfato de Adenosina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Transdução de Sinais
2.
Nat Commun ; 11(1): 4730, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934237

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Commun ; 11(1): 4261, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848136

RESUMO

Metastasis, the spread of malignant cells from a primary tumour to distant sites, causes 90% of cancer-related deaths. The integrin ITGB3 has been previously described to play an essential role in breast cancer metastasis, but the precise mechanisms remain undefined. We have now uncovered essential and thus far unknown roles of ITGB3 in vesicle uptake. The functional requirement for ITGB3 derives from its interactions with heparan sulfate proteoglycans (HSPGs) and the process of integrin endocytosis, allowing the capture of extracellular vesicles and their endocytosis-mediated internalization. Key for the function of ITGB3 is the interaction and activation of focal adhesion kinase (FAK), which is required for endocytosis of these vesicles. Thus, ITGB3 has a central role in intracellular communication via extracellular vesicles, proposed to be critical for cancer metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Comunicação Celular/fisiologia , Vesículas Extracelulares/metabolismo , Integrina beta3/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Endocitose , Feminino , Quinase 1 de Adesão Focal/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Células MCF-7 , Camundongos , Camundongos Nus , Modelos Biológicos , Metástase Neoplásica/patologia , Transplante de Neoplasias
4.
BMC Cancer ; 19(1): 666, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31277602

RESUMO

BACKGROUND: Cancer is a rapidly evolving, multifactorial disease that accumulates numerous genetic and epigenetic alterations. This results in molecular and phenotypic heterogeneity within the tumor, the complexity of which is further amplified through specific interactions between cancer cells. We aimed to dissect the molecular mechanisms underlying the cooperation between different clones. METHODS: We produced clonal cell lines derived from the MDA-MB-231 breast cancer cell line, using the UbC-StarTrack system, which allowed tracking of multiple clones by color: GFP C3, mKO E10 and Sapphire D7. Characterization of these clones was performed by growth rate, cell metabolic activity, wound healing, invasion assays and genetic and epigenetic arrays. Tumorigenicity was tested by orthotopic and intravenous injections. Clonal cooperation was evaluated by medium complementation, co-culture and co-injection assays. RESULTS: Characterization of these clones in vitro revealed clear genetic and epigenetic differences that affected growth rate, cell metabolic activity, morphology and cytokine expression among cell lines. In vivo, all clonal cell lines were able to form tumors; however, injection of an equal mix of the different clones led to tumors with very few mKO E10 cells. Additionally, the mKO E10 clonal cell line showed a significant inability to form lung metastases. These results confirm that even in stable cell lines heterogeneity is present. In vitro, the complementation of growth medium with medium or exosomes from parental or clonal cell lines increased the growth rate of the other clones. Complementation assays, co-growth and co-injection of mKO E10 and GFP C3 clonal cell lines increased the efficiency of invasion and migration. CONCLUSIONS: These findings support a model where interplay between clones confers aggressiveness, and which may allow identification of the factors involved in cellular communication that could play a role in clonal cooperation and thus represent new targets for preventing tumor progression.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células Clonais/metabolismo , Heterogeneidade Genética , Animais , Apoptose , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Células Clonais/patologia , Técnicas de Cocultura , Citocinas/análise , Elementos de DNA Transponíveis/genética , Feminino , Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...