Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(5): 1935-1941, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35912483

RESUMO

We herein report our investigations on the use of a tris-silanol-decorated polyoxotungstate, [SbW9O33(tBuSiOH)3]3-, as a molecular support model to describe the coordination of an isolated vanadium atom at metal oxides, focusing on the reactivity of the reduced derivatives in the presence of protons. Accumulation of electrons and protons at an active site is a main feature associated with heterogeneous catalysts able to conduct the (oxy)dehydrogenation of alkanes or alcohols. Our results indicate that two-electron reduced derivatives release H2 upon protonation, a reaction that probably takes place at the polyoxotungstic framework rather than at the vanadium center.

2.
Inorg Chem ; 61(20): 7700-7709, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35549467

RESUMO

The mixed molybdenum/tungsten Keggin-type polyoxometalate (POM) hybrid (TBA)4[PW9Mo2O39{Sn(C6H4I)}] (TBA = tert-butylammonium) has been prepared by the reaction between [α-PW9Mo2O39]7- and [Cl3Sn(C6H4I)] in dried acetonitrile, in the presence of tetra-n-butylammonium bromide. A further coupling reaction affords the ferrocenyl derivative (TBA)4[PW9Mo2O39{Sn(C6H4)C≡C(C6H4)Fc}]. The POM hybrids have been thoroughly characterized by NMR and IR spectroscopies. Electrochemical analysis confirms their ease of reduction compared to the all-W analogue, albeit with a second reduction process occurring at a lower potential than in the all-Mo species. It is noteworthy that the second reduction is accompanied by an unusual red shift of the electronic absorption spectrum. Whereas there is no doubt that the first reduction deals with Mo, the location of the second electron in the bireduced species, on the second Mo or on W, has thus been the subject of a cross-investigation by spectroelectrochemistry, electron spin resonance, and theoretical calculations. Finally, it came out that the second reduction is also Mo-centered with two unpaired and antiferromagnetically coupled extra electrons.

3.
Chem Soc Rev ; 51(1): 293-328, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34889926

RESUMO

This review provides a comprehensive overview of recent advances in the supramolecular organisation and hierarchical self-assembly of organo-functionalised hybrid polyoxometalates (hereafter referred to as hybrid POMs), and their emerging role as multi-functional building blocks in the construction of new nanomaterials. Polyoxometalates have long been studied as a fascinating outgrowth of traditional metal-oxide chemistry, where the unusual position they occupy between individual metal oxoanions and solid-state bulk oxides imbues them with a range of attractive properties (e.g. solubility, high structural modularity and tuneable properties/reactivity). Specifically, the capacity for POMs to be covalently coupled to an effectively limitless range of organic moieties has opened exciting new avenues in their rational design, while the combination of distinct organic and inorganic components facilitates the formation of complex molecular architectures and the emergence of new, unique functionalities. Here, we present a detailed discussion of the design opportunities afforded by hybrid POMs, where fine control over their size, topology and their covalent and non-covalent interactions with a range of other species and/or substrates makes them ideal building blocks in the assembly of a broad range of supramolecular hybrid nanomaterials. We review both direct self-assembly approaches (encompassing both solution and solid-state approaches) and the non-covalent interactions of hybrid POMs with a range of suitable substrates (including cavitands, carbon nanotubes and biological systems), while giving key consideration to the underlying driving forces in each case. Ultimately, this review aims to demonstrate the enormous potential that the rational assembly of hybrid POM clusters shows for the development of next-generation nanomaterials with applications in areas as diverse as catalysis, energy-storage and molecular biology, while providing our perspective on where the next major developments in the field may emerge.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Ânions , Polieletrólitos
4.
J Am Chem Soc ; 140(44): 14903-14914, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30362733

RESUMO

Here we report on the use of a silanol-decorated polyoxotungstate, [SbW9O33( tBuSiOH)3]3- (1), as a molecular support to describe the coordination of a vanadium atom at a single-site on silica surfaces. By reacting [V(Mes)3·thf] (Mes = 2,4,6-trimethylphenyl) with 1 in tetrahydrofuran, the vanadium(III) derivative [SbW9O33( tBuSiO)3V(thf)]3- (2) was obtained. Compound 2 displays the paramagnetic behavior expected for a d2-VIII high spin complex (SQUID measurements) with a triplet electronic ground state (ca. 30 kcal·mol-1 more stable than the singlet, from DFT calculations). Compound 2 proves to be a reliable model for reduced isolated-vanadium atom dispersed on silica surfaces [(≡Si-O)3VIII(OH2)], an intermediate that is often proposed in a Mars-van Krevelen type mechanism for partial oxidation of light alcohols. Oxidation of 2 under air produced the oxo-derivative [SbW9O33( tBuSiO)3VO]3- (3). In compound 2, the d2-electrons are localized in degenerated d(V) orbitals, whereas in the electronically analogous bireduced-[SbW9O33( tBuSiO)3VO]5-, 3·(2e), one electron is localized on d(V) orbital and the second one is delocalized on the polyoxotungstic framework, leading to a unique case of a bireduced heteropolyanion derivative with completely decoupled d1-V(IV) and d1-W(V). Our body of experimental results (EPR, magnetic measurements, spectroelectrochemical studies, Raman spectroscopy) and theoretical studies highlights (i) the role of the apical ligand coordination, i.e., thf (σ-donor) vs oxo (π-donor), in destabilizing or stabilizing the d(V) orbitals relative to the d(W) orbitals, and (ii) a geometrical distortion of the O3VO entity that causes a splitting of the degenerated orbitals and the stabilization of one d(V) orbital in the bireduced compound 3·(2e).

5.
Chem Soc Rev ; 41(22): 7605-22, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22782306

RESUMO

Polyoxometalates (POMs) have remarkable properties and a great deal of potential to meet contemporary societal demands regarding health, environment, energy and information technologies. However, implementation of POMs in various functional architectures, devices or materials requires a processing step. Most developments have considered the exchange of POM counterions in an electrostatically driven approach: immobilization of POMs on electrodes and other surfaces including oxides, embedding in polymers, incorporation into Layer-by-Layer assemblies or Langmuir-Blodgett films and hierarchical self-assembly of surfactant-encapsulated POMs have thus been thoroughly investigated. Meanwhile, the field of organic-inorganic POM hybrids has expanded and offers the opportunity to explore the covalent approach for the organization or immobilization of POMs. In this critical review, we focus on the use of POM hybrids in selected fields of applications such as catalysis, energy conversion and molecular nanosciences and we endeavor to discuss the impact of the covalent approach compared to the electrostatic one. The synthesis of organic-inorganic POM hybrids starting from bare POMs, that is the direct functionalization of POMs, is well documented and reliable and efficient synthetic procedures are available. However, as the complexity of the targeted functional system increases a multi-step strategy relying on the post-functionalization of preformed hybrid POM platforms could prove more appealing. In the second part of this review, we thus survey the synthetic methodologies of post-functionalization of POMs and critically discuss the opportunities it offers compared to direct functionalization.

7.
Dalton Trans ; (40): 4589-93, 2007 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-17928917

RESUMO

Grafting the well-defined molecular complexes [(ArO)Zr(CH2tBu)3], , and [(ArO)2Zr(CH2tBu)2], , on SiO2-(700) (ArO=2,6-Ph2C6H3O) gives the corresponding monosiloxy surface complexes [([TRIPLE BOND]SiO)Zr(CH2tBu)2(OAr)] and [([TRIPLE BOND]SiO)Zr(CH2tBu)(OAr)2] as major surface species as evidenced by mass balance analysis, IR and NMR spectroscopies. In both cases, minor cyclometallated species (ca. 20%) are also probably formed during the grafting process. While /SiO2-(700) catalytically transforms propane into its lower and higher homologues, /SiO2-(700) remains inactive. Moreover, the formation of butane as the major higher homologues is consistent with the formation of metallocarbene intermediates in this system in contrast to what was observed for the corresponding homologation reaction on silica supported zirconium hydrides.

8.
Chemistry ; 13(32): 8960-70, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17721893

RESUMO

A synthetic route to tetradentate chiral N(4) ligands has been developed with the aim to study the potential of corresponding iron and manganese complexes as catalysts for enantioselective epoxidation. These ligands, which contain two oxazoline rings and two trialkylamino groups as coordinating units, are readily prepared in enantiomerically pure form by the reaction of chiral 2-chloromethyloxazolines with achiral N,N'-dimethylethane-1,2-diamine or chiral (R,R)-N,N'-dimethylcyclohexane-1,2-diamine. The ligands derived from N,N'-dimethylethane-1,2-diamine reacted with anhydrous metal halides MnCl(2) and FeCl(2) in a stereoselective manner to give octahedral mononuclear complexes that have the general formula Delta-[(L)MCl(2)]. In contrast, the ligands derived from N,N'-dimethylcyclohexane-1,2-diamine formed complexes with different coordination modes depending on the diastereomer employed: in one case the metal ion was found to be pentacoordinate, in the other case a hexacoordinated complex was observed. The structure of a series of Fe and Mn complexes was determined by X-ray analysis. The coordination chemistry of these ligands was further studied by X-ray and NMR analyses of the diamagnetic isostructural complexes [(L)ZnCl(2)]. Analogous ionic complexes, which were prepared by removing chloride with silver trifluoromethanesulfonate or hexafluoroantimonate, were tested as catalysts for the epoxidation of olefins.


Assuntos
Metais Pesados/química , Compostos Organometálicos/síntese química , Oxazóis/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química , Estereoisomerismo
9.
Inorg Chem ; 46(13): 5152-4, 2007 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-17542578

RESUMO

The synthesis and structural characterization of a samarium-dinitrogen complex supported by a calix[4]arene ligand in which the N-N bond distance has been stretched to 1.611(16) Angstrom are described. The central mu(3)-eta(2):eta(2):eta(2)-hydrazido tetraanion formed is bonded to three Sm(III) centers with an overall butterfly-type arrangement.


Assuntos
Calixarenos/química , Nitrogênio/química , Fenóis/química , Samário/química , Elementos da Série dos Lantanídeos/química , Estrutura Molecular , Oxirredução
10.
Chemistry ; 8(9): 2072-80, 2002 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-11981892

RESUMO

This is the first coherent report on the metalation of calix[4]arene by alkali and alkaline-earth metals, thus providing a high-yield production of appropriate synthons for the synthesis of transition metal calix[4]arenes. In addition, various facets of the coordination chemistry by calix[4]arene anions of alkali and alkaline-earth metal ions have been singled out. Among them: 1) the exo and endo coordination of metal ions by the calix[4]arene skeleton; 2) the pi solvation of the ions by the phenyl rings; 3) the ion-carrier properties of metallacalix[4]arenes; 4) the simulation of the kinetically labile coordination sphere of alkali and alkaline-earth metal ions by a polyoxo rigid skeleton. The peculiarities of the complexation of alkali and alkaline-earth metal ions by calix[4]arenes outlined are deduced from the synthesis and the structural characterization both in solution ((1)H NMR) and in the solid state (X-ray structure analysis) of the following classes of compounds: 1) [p-tBu-calix[4](OMS(n))(4)](2) (M=Li, Na, K); 2) [p-tBu-calix[4](OR)(2)(O)(2)ML] (M=Mg, L=THF, R=C(5)H(9); M=Ca, L=TMEDA (tetramethylethylenediamine), R=C(5)H(9); M=Ca, L=DME (dimethoxyethane), R=C(5)H(9); M=Ba, L=TMEDA, R=C(5)H(9); M=Ba, L=none, R=C(5)H(9)); 3) [p-tBu-calix[4](OC(5)H(9))(2)(O)(2)Ca(2)I(2)(MeCN)(2)]; 4) [(p-tBu-calix[4](OR)(2)(O)(2))(2)BaNa(2)].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...