Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 18(6): e3000728, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32516311

RESUMO

The development of multicellularity is a key evolutionary transition allowing for differentiation of physiological functions across a cell population that confers survival benefits; among unicellular bacteria, this can lead to complex developmental behaviors and the formation of higher-order community structures. Herein, we demonstrate that in the social δ-proteobacterium Myxococcus xanthus, the secretion of a novel biosurfactant polysaccharide (BPS) is spatially modulated within communities, mediating swarm migration as well as the formation of multicellular swarm biofilms and fruiting bodies. BPS is a type IV pilus (T4P)-inhibited acidic polymer built of randomly acetylated ß-linked tetrasaccharide repeats. Both BPS and exopolysaccharide (EPS) are produced by dedicated Wzx/Wzy-dependent polysaccharide-assembly pathways distinct from that responsible for spore-coat assembly. While EPS is preferentially produced at the lower-density swarm periphery, BPS production is favored in the higher-density swarm interior; this is consistent with the former being known to stimulate T4P retraction needed for community expansion and a function for the latter in promoting initial cell dispersal. Together, these data reveal the central role of secreted polysaccharides in the intricate behaviors coordinating bacterial multicellularity.


Assuntos
Myxococcus xanthus/citologia , Myxococcus xanthus/metabolismo , Polissacarídeos Bacterianos/metabolismo , Acetilação , Vias Biossintéticas/genética , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Membrana Celular/metabolismo , Família Multigênica , Myxococcus xanthus/genética , Polissacarídeos Bacterianos/química , Espectroscopia de Prótons por Ressonância Magnética , Tensoativos/metabolismo
2.
PLoS One ; 7(10): e46738, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071625

RESUMO

The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by "RTK swapping" by interfering with PDGFRß phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.


Assuntos
Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Terapia de Alvo Molecular , Transcriptoma/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Benzotiazóis/administração & dosagem , Benzotiazóis/efeitos adversos , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Nus , Mutação de Sentido Incorreto , Fosforilação , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Development ; 129(19): 4559-69, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12223412

RESUMO

In chick embryos, most if not all, replicating myoblasts present within the skeletal muscle masses express high levels of the FGF receptor FREK/FGFR4, suggesting an important role for this molecule during myogenesis. We examined FGFR4 function during myogenesis, and we demonstrate that inhibition of FGFR4, but not FGFR1 signaling, leads to a dramatic loss of limb muscles. All muscle markers analyzed (such as Myf5, MyoD and the embryonic myosin heavy chain) are affected. We show that inhibition of FGFR4 signal results in an arrest of muscle progenitor differentiation, which can be rapidly reverted by the addition of exogenous FGF, rather than a modification in their proliferative capacities. Conversely, over-expression of FGF8 in somites promotes FGFR4 expression and muscle differentiation in this tissue. Together, these results demonstrate that in vivo, myogenic differentiation is positively controlled by FGF signaling, a notion that contrasts with the general view that FGF promotes myoblast proliferation and represses myogenic differentiation. Our data assign a novel role to FGF8 during chick myogenesis and demonstrate that FGFR4 signaling is a crucial step in the cascade of molecular events leading to terminal muscle differentiation.


Assuntos
Proteínas de Ligação a DNA , Músculo Esquelético/citologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Transativadores , Animais , Biomarcadores , Diferenciação Celular , Divisão Celular , Embrião de Galinha , Extremidades , Expressão Gênica , Botões de Extremidades , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Fator Regulador Miogênico 5 , Cadeias Pesadas de Miosina/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células-Tronco/citologia , Proteínas de Xenopus , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...