Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574912

RESUMO

Self-assembled InN nanocolumns were grown at low temperatures by plasma-assisted molecular beam epitaxy with a high crystalline quality. The self-assembling procedure was carried out on AlN/Al layers on Si(111) substrates avoiding the masking process. The Al interlayer on the Si(111) substrate prevented the formation of amorphous SiN. We found that the growth mechanism at 400 ∘ C of InN nanocolumns started by a layer-layer (2D) nucleation, followed by the growth of 3D islands. This growth mechanism promoted the nanocolumn formation without strain. The nanocolumnar growth proceeded with cylindrical and conical shapes with heights between 250 and 380 nm. Detailed high-resolution transmission electron microscopy analysis showed that the InN nanocolumns have a hexagonal crystalline structure, free of dislocation and other defects. The analysis of the phonon modes also allowed us to identify the hexagonal structure of the nanocolumns. In addition, the photoluminescence spectrum showed an energy transition of 0.72 eV at 20 K for the InN nanocolumns, confirmed by photoreflectance spectroscopy.

2.
Sci Rep ; 8(1): 5096, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572514

RESUMO

Currently, superparamagnetic functionalized systems of magnetite (Fe3O4) nanoparticles (NPs) are promising options for applications in hyperthermia therapy, drug delivery and diagnosis. Fe3O4 NPs below 20 nm have stable single domains (SSD), which can be oriented by magnetic field application. Dispersion of Fe3O4 NPs in silicon dioxide (SiO2) matrix allows local SSD response with uniaxial anisotropy and orientation to easy axis, 90° <001> or 180° <111>. A successful, easy methodology to produce Fe3O4 NPs (6-17 nm) has been used with the Stöber modification. NPs were embedded in amorphous and biocompatible SiO2 matrix by mechanical stirring in citrate and tetraethyl orthosilicate (TEOS). Fe3O4 NPs dispersion was sampled in the range of 2-12 h to observe the SiO2 matrix formation as time function. TEM characterization identified optimal conditions at 4 h stirring for separation of SSD Fe3O4 in SiO2 matrix. Low magnetization (Ms) of 0.001 emu and a coercivity (Hc) of 24.75 Oe indicate that the embedded SSD Fe3O4 in amorphous SiO2 reduces the Ms by a diamagnetic barrier. Magnetic force microscopy (MFM) showed SSD Fe3O4 of 1.2 nm on average embedded in SiO2 matrix with uniaxial anisotropy response according to Fe3+ and Fe2+ electron spin coupling and rotation by intrinsic Neél contribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...