Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 6(1): fcad353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38226317

RESUMO

Fragile X syndrome is a neurodevelopmental disorder caused by silencing of the fragile X messenger ribonucleotide gene. Patients display a wide spectrum of symptoms ranging from intellectual and learning disabilities to behavioural challenges including autism spectrum disorder. In addition to this, patients also display a diversity of symptoms due to mosaicism. These factors make fragile X syndrome a difficult syndrome to manage and suggest that a single targeted therapeutic approach cannot address all the symptoms. To this end, we utilized Healx's data-driven drug discovery platform to identify a treatment strategy to address the wide range of diverse symptoms among patients. Computational methods identified the combination of ibudilast and gaboxadol as a treatment for several pathophysiological targets that could potentially reverse multiple symptoms associated with fragile X syndrome. Ibudilast is an approved broad-spectrum phosphodiesterase inhibitor, selective against both phosphodiesterase 4 and phosphodiesterase 10, and has demonstrated to have several beneficial effects in the brain. Gaboxadol is a GABAA receptor agonist, selective against the delta subunit, which has previously displayed encouraging results in a fragile X syndrome clinical trial. Alterations in GABA and cyclic adenosine monophosphate metabolism have long since been associated with the pathophysiology of fragile X syndrome; however, targeting both pathways simultaneously has never been investigated. Both drugs have a good safety and tolerability profile in the clinic making them attractive candidates for repurposing. We set out to explore whether the combination of ibudilast and gaboxadol could demonstrate therapeutic efficacy in a fragile X syndrome mouse model. We found that daily treatment with ibudilast significantly enhanced the ability of fragile X syndrome mice to perform a number of different cognitive assays while gaboxadol treatment improved behaviours such as hyperactivity, aggression, stereotypy and anxiety. Importantly, when ibudilast and gaboxadol were co-administered, the cognitive deficits as well as the aforementioned behaviours were rescued. Moreover, this combination treatment showed no evidence of tolerance, and no adverse effects were reported following chronic dosing. This work demonstrates for the first time that by targeting multiple pathways, with a combination treatment, we were able to rescue more phenotypes in a fragile X syndrome mouse model than either ibudilast or gaboxadol could achieve as monotherapies. This combination treatment approach holds promise for addressing the wide spectrum of diverse symptoms in this heterogeneous patient population and may have therapeutic potential for idiopathic autism.

2.
Orphanet J Rare Dis ; 14(1): 225, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615551

RESUMO

The number of available therapies for rare diseases remains low, as fewer than 6% of rare diseases have an approved treatment option. The International Rare Diseases Research Consortium (IRDiRC) set up the multi-stakeholder Data Mining and Repurposing (DMR) Task Force to examine the potential of applying biomedical data mining strategies to identify new opportunities to use existing pharmaceutical compounds in new ways and to accelerate the pace of drug development for rare disease patients. In reviewing past successes of data mining for drug repurposing, and planning for future biomedical research capacity, the DMR Task Force identified four strategic infrastructure investment areas to focus on in order to accelerate rare disease research productivity and drug development: (1) improving the capture and sharing of self-reported patient data, (2) better integration of existing research data, (3) increasing experimental testing capacity, and (4) sharing of rare disease research and development expertise. Additionally, the DMR Task Force also recommended a number of strategies to increase data mining and repurposing opportunities for rare diseases research as well as the development of individualized and precision medicine strategies.


Assuntos
Pesquisa Biomédica , Mineração de Dados , Reposicionamento de Medicamentos , Doenças Raras/tratamento farmacológico , Big Data , Bases de Dados Factuais , Humanos
3.
Neuropharmacology ; 147: 74-86, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29792283

RESUMO

Many available drugs have been repurposed as treatments for neurodevelopmental disorders. In the specific case of fragile X syndrome, many clinical trials of available drugs have been conducted with the goal of disease modification. In some cases, detailed understanding of basic disease mechanisms has guided the choice of drugs for clinical trials, and several notable successes in fragile X clinical trials have led to common use of drugs such as minocycline in routine medical practice. Newer technologies like Disease-Gene Expression Matching (DGEM) may allow for more rapid identification of promising repurposing candidates. A DGEM study predicted that sulindac could be therapeutic for fragile X, and subsequent preclinical validation studies have shown promising results. The use of combinations of available drugs and nutraceuticals has the potential to greatly expand the options for repurposing, and may even be a viable business strategy. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.


Assuntos
Reposicionamento de Medicamentos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Animais , Dissulfiram/farmacologia , Humanos , Metoprolol/farmacologia , Minociclina/farmacologia , Atividade Motora/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto , Sulindaco/farmacologia
4.
Nat Rev Drug Discov ; 18(1): 41-58, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30310233

RESUMO

Given the high attrition rates, substantial costs and slow pace of new drug discovery and development, repurposing of 'old' drugs to treat both common and rare diseases is increasingly becoming an attractive proposition because it involves the use of de-risked compounds, with potentially lower overall development costs and shorter development timelines. Various data-driven and experimental approaches have been suggested for the identification of repurposable drug candidates; however, there are also major technological and regulatory challenges that need to be addressed. In this Review, we present approaches used for drug repurposing (also known as drug repositioning), discuss the challenges faced by the repurposing community and recommend innovative ways by which these challenges could be addressed to help realize the full potential of drug repurposing.


Assuntos
Descoberta de Drogas , Indústria Farmacêutica , Reposicionamento de Medicamentos/normas , Humanos
5.
Bioinformatics ; 35(7): 1213-1220, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169824

RESUMO

MOTIVATION: Combining disease relationships across multiple biological levels could aid our understanding of common processes taking place in disease, potentially indicating opportunities for drug sharing. Here, we propose a similarity fusion approach which accounts for differences in information content between different data types, allowing combination of each data type in a balanced manner. RESULTS: We apply this method to six different types of biological data (ontological, phenotypic, literature co-occurrence, genetic association, gene expression and drug indication data) for 84 diseases to create a 'disease map': a network of diseases connected at one or more biological levels. As well as reconstructing known disease relationships, 15% of links in the disease map are novel links spanning traditional ontological classes, such as between psoriasis and inflammatory bowel disease. 62% of links in the disease map represent drug-sharing relationships, illustrating the relevance of the similarity fusion approach to the identification of potential therapeutic relationships. AVAILABILITY AND IMPLEMENTATION: Freely available under the MIT license at https://github.com/e-oerton/disease-similarity-fusion. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Humanos , Masculino
6.
Hum Mol Genet ; 27(12): 2052-2063, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29618004

RESUMO

Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a complex neurological disorder, characterized by infantile seizures, impairment of cognitive and motor skills and autistic features. Loss of Cdkl5 in mice affects dendritic spine maturation and dynamics but the underlying molecular mechanisms are still far from fully understood. Here we show that Cdkl5 deficiency in primary hippocampal neurons leads to deranged expression of the alpha-amino-3-hydroxy-5-methyl-4-iso-xazole propionic acid receptors (AMPA-R). In particular, a dramatic reduction of expression of the GluA2 subunit occurs concomitantly with its hyper-phosphorylation on Serine 880 and increased ubiquitination. Consequently, Cdkl5 silencing skews the composition of membrane-inserted AMPA-Rs towards the GluA2-lacking calcium-permeable form. Such derangement is likely to contribute, at least in part, to the altered synaptic functions and cognitive impairment linked to loss of Cdkl5. Importantly, we find that tianeptine, a cognitive enhancer and antidepressant drug, known to recruit and stabilise AMPA-Rs at the synaptic sites, can normalise the expression of membrane inserted AMPA-Rs as well as the number of PSD-95 clusters, suggesting its therapeutic potential for patients with mutations in CDKL5.


Assuntos
Síndromes Epilépticas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/genética , Receptores de AMPA/genética , Espasmos Infantis/tratamento farmacológico , Tiazepinas/administração & dosagem , Animais , Antidepressivos/administração & dosagem , Proteína 4 Homóloga a Disks-Large/genética , Síndromes Epilépticas/genética , Síndromes Epilépticas/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Humanos , Camundongos , Mutação , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosforilação , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/deficiência , Espasmos Infantis/genética , Espasmos Infantis/patologia , Sinapses/efeitos dos fármacos , Sinapses/genética
7.
Protein Sci ; 27(7): 1262-1274, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29603451

RESUMO

Intracellular deposits of α-synuclein in the form of Lewy bodies are major hallmarks of Parkinson's disease (PD) and a range of related neurodegenerative disorders. Post-translational modifications (PTMs) of α-synuclein are increasingly thought to be major modulators of its structure, function, degradation and toxicity. Among these PTMs, phosphorylation near the C-terminus at S129 has emerged as a dominant pathogenic modification as it is consistently observed to occur within the brain and cerebrospinal fluid (CSF) of post-mortem PD patients, and its level appears to correlate with disease progression. Phosphorylation at the neighboring tyrosine residue Y125 has also been shown to protect against α-synuclein toxicity in a Drosophila model of PD. In the present study we address the potential roles of C-terminal phosphorylation in modulating the interaction of α-synuclein with other protein partners, using a single domain antibody fragment (NbSyn87) that binds to the C-terminal region of α-synuclein with nanomolar affinity. The results reveal that phosphorylation at S129 has negligible effect on the binding affinity of NbSyn87 to α-synuclein while phosphorylation at Y125, only four residues away, decreases the binding affinity by a factor of 400. These findings show that, despite the fact that α-synuclein is intrinsically disordered in solution, selective phosphorylation can modulate significantly its interactions with other molecules and suggest how this particular form of modification could play a key role in regulating the normal and aberrant function of α-synuclein.


Assuntos
Processamento de Proteína Pós-Traducional , Anticorpos de Domínio Único/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Autopsia , Sítios de Ligação , Encéfalo/metabolismo , Humanos , Doença de Parkinson/metabolismo , Fosforilação , Ligação Proteica , Serina/metabolismo , Tirosina/metabolismo , alfa-Sinucleína/líquido cefalorraquidiano
8.
BMC Biol ; 15(1): 57, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673288

RESUMO

BACKGROUND: The aggregation of the protein ɑ-synuclein (ɑS) underlies a range of increasingly common neurodegenerative disorders including Parkinson's disease. One widely explored therapeutic strategy for these conditions is the use of antibodies to target aggregated ɑS, although a detailed molecular-level mechanism of the action of such species remains elusive. Here, we characterize ɑS aggregation in vitro in the presence of two ɑS-specific single-domain antibodies (nanobodies), NbSyn2 and NbSyn87, which bind to the highly accessible C-terminal region of ɑS. RESULTS: We show that both nanobodies inhibit the formation of ɑS fibrils. Furthermore, using single-molecule fluorescence techniques, we demonstrate that nanobody binding promotes a rapid conformational conversion from more stable oligomers to less stable oligomers of ɑS, leading to a dramatic reduction in oligomer-induced cellular toxicity. CONCLUSIONS: The results indicate a novel mechanism by which diseases associated with protein aggregation can be inhibited, and suggest that NbSyn2 and NbSyn87 could have significant therapeutic potential.


Assuntos
Anticorpos de Domínio Único/metabolismo , alfa-Sinucleína/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Ligação Proteica
9.
Biochemistry ; 55(22): 3116-22, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27096466

RESUMO

α-Synuclein is an intrinsically disordered protein whose aggregation is associated with Parkinson's disease and other related neurodegenerative disorders. Recently, two single-domain camelid antibodies (nanobodies) were shown to bind α-synuclein with high affinity. Herein, we investigated how these two nanobodies (NbSyn2 and NbSyn87), which are directed to two distinct epitopes within the C-terminal domain of α-synuclein, affect the conformational properties of this protein. Our results suggest that nanobody NbSyn2, which binds to the five C-terminal residues of α-synuclein (residues 136-140), does not disrupt the transient long-range interactions that generate a degree of compaction within the native structural ensemble of α-synuclein. In contrast, the data that we report indicate that NbSyn87, which targets a central region within the C-terminal domain (residues 118-128), has more substantial effects on the fluctuating secondary and tertiary structure of the protein. These results are consistent with the different effects that the two nanobodies have on the aggregation behavior of α-synuclein in vitro. Our findings thus provide new insights into the type of effects that nanobodies can have on the conformational ensemble of α-synuclein.


Assuntos
Epitopos/metabolismo , Anticorpos de Domínio Único/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animais , Camelídeos Americanos , Epitopos/imunologia , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Anticorpos de Domínio Único/imunologia , alfa-Sinucleína/imunologia
10.
Proc Natl Acad Sci U S A ; 112(16): E1994-2003, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25855634

RESUMO

We describe the isolation and detailed structural characterization of stable toxic oligomers of α-synuclein that have accumulated during the process of amyloid formation. Our approach has allowed us to identify distinct subgroups of oligomers and to probe their molecular architectures by using cryo-electron microscopy (cryoEM) image reconstruction techniques. Although the oligomers exist in a range of sizes, with different extents and nature of ß-sheet content and exposed hydrophobicity, they all possess a hollow cylindrical architecture with similarities to certain types of amyloid fibril, suggesting that the accumulation of at least some forms of amyloid oligomers is likely to be a consequence of very slow rates of rearrangement of their ß-sheet structures. Our findings reveal the inherent multiplicity of the process of protein misfolding and the key role the ß-sheet geometry acquired in the early stages of the self-assembly process plays in dictating the kinetic stability and the pathological nature of individual oligomeric species.


Assuntos
Amiloide/química , Multimerização Proteica , alfa-Sinucleína/química , alfa-Sinucleína/toxicidade , Microscopia Crioeletrônica , Interações Hidrofóbicas e Hidrofílicas , Imageamento Tridimensional , Modelos Moleculares , Peso Molecular , Estrutura Secundária de Proteína , alfa-Sinucleína/ultraestrutura
11.
PLoS One ; 9(5): e96480, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24879444

RESUMO

Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.


Assuntos
Técnica Delphi , Formulação de Políticas , Política Pública/tendências , Ciência/tendências , Tecnologia/tendências , Mudança Climática , Conservação dos Recursos Naturais , Tomada de Decisões , Atenção à Saúde , Demografia , Meio Ambiente , Governo , Humanos , Invenções , Expectativa de Vida , Política , Dinâmica Populacional , Setor Privado , Alocação de Recursos
12.
PLoS One ; 8(11): e79160, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24236103

RESUMO

In recent years, it has become accepted that α-synuclein (αSyn) has a key role in the microglia-mediated neuroinflammation, which accompanies the development of Parkinson's disease and other related disorders, such as Dementia with Lewy Bodies and Alzheimer's disease. Nevertheless, the cellular and molecular mechanisms underlying its pathological actions, especially in the sporadic forms of the diseases, are not completely understood. Intriguingly, several epidemiological and animal model studies have revealed a link between certain microbial infections and the onset or progression of sporadic forms of these neurodegenerative disorders. In this work, we have characterized the effect of toll-like receptor (TLR) stimulation on primary murine microglial cultures and analysed the impact of priming cells with extracellular wild-type (Wt) αSyn on the subsequent TLR stimulation of cells with a set of TLR ligands. By assaying key interleukins and chemokines we report that specific stimuli, in particular Pam3Csk4 (Pam3) and single-stranded RNA40 (ssRNA), can differentially affect the TLR2/1- and TLR7-mediated responses of microglia when pre-conditioned with αSyn by augmenting IL-6, MCP-1/CCL2 or IP-10/CXCL10 secretion levels. Furthermore, we report a skewing of αSyn-primed microglia stimulated with ssRNA (TLR7) or Pam3 (TLR2/1) towards intermediate but at the same time differential, M1/M2 phenotypes. Finally, we show that the levels and intracellular location of activated caspase-3 protein change significantly in αSyn-primed microglia after stimulation with these particular TLR agonists. Overall, we report a remarkable impact of non-aggregated αSyn pre-sensitization of microglia on TLR-mediated immunity, a phenomenon that could contribute to triggering the onset of sporadic α-synuclein-related neuropathologies.


Assuntos
Microglia/metabolismo , Receptores Toll-Like/agonistas , alfa-Sinucleína/fisiologia , Aminoquinolinas/farmacologia , Animais , Arginase/genética , Arginase/metabolismo , Bacillus subtilis , Caspase 3/metabolismo , Polaridade Celular , Células Cultivadas , Citocinas/metabolismo , Expressão Gênica/imunologia , Imiquimode , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Peptidoglicano/farmacologia , Poli I-C/farmacologia , Receptores Toll-Like/metabolismo
13.
J Biol Chem ; 288(29): 20883-20895, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23740253

RESUMO

There is increasing evidence for the involvement of lipid membranes in both the functional and pathological properties of α-synuclein (α-Syn). Despite many investigations to characterize the binding of α-Syn to membranes, there is still a lack of understanding of the binding mode linking the properties of lipid membranes to α-Syn insertion into these dynamic structures. Using a combination of an optical biosensing technique and in situ atomic force microscopy, we show that the binding strength of α-Syn is related to the specificity of the lipid environment (the lipid chemistry and steric properties within a bilayer structure) and to the ability of the membranes to accommodate and remodel upon the interaction of α-Syn with lipid membranes. We show that this interaction results in the insertion of α-Syn into the region of the headgroups, inducing a lateral expansion of lipid molecules that can progress to further bilayer remodeling, such as membrane thinning and expansion of lipids out of the membrane plane. We provide new insights into the affinity of α-Syn for lipid packing defects found in vesicles of high curvature and in planar membranes with cone-shaped lipids and suggest a comprehensive model of the interaction between α-Syn and lipid bilayers. The ability of α-Syn to sense lipid packing defects and to remodel membrane structure supports its proposed role in vesicle trafficking.


Assuntos
Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/química , alfa-Sinucleína/metabolismo , Interferometria , Bicamadas Lipídicas/química , Meliteno/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Permeabilidade , Fosfolipídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Extratos de Tecidos , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , alfa-Sinucleína/química
14.
J Mol Biol ; 425(14): 2397-411, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23557833

RESUMO

Nanobodies are single-domain fragments of camelid antibodies that are emerging as versatile tools in biotechnology. We describe here the interactions of a specific nanobody, NbSyn87, with the monomeric and fibrillar forms of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinson's disease. We have characterized these interactions using a range of biophysical techniques, including nuclear magnetic resonance and circular dichroism spectroscopy, isothermal titration calorimetry and quartz crystal microbalance measurements. In addition, we have compared the results with those that we have reported previously for a different nanobody, NbSyn2, also raised against monomeric αSyn. This comparison indicates that NbSyn87 and NbSyn2 bind with nanomolar affinity to distinctive epitopes within the C-terminal domain of soluble αSyn, comprising approximately amino acids 118-131 and 137-140, respectively. The calorimetric and quartz crystal microbalance data indicate that the epitopes of both nanobodies are still accessible when αSyn converts into its fibrillar structure. The apparent affinities and other thermodynamic parameters defining the binding between the nanobody and the fibrils, however, vary significantly with the length of time that the process of fibril formation has been allowed to progress and with the conditions under which formation occurs, indicating that the environment of the C-terminal domain of αSyn changes as fibril assembly takes place. These results demonstrate that nanobodies are able to target forms of potentially pathogenic aggregates that differ from each other in relatively minor details of their structure, such as those associated with fibril maturation.


Assuntos
Multimerização Proteica , Anticorpos de Domínio Único/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Calorimetria , Dicroísmo Circular , Mapeamento de Epitopos , Cinética , Espectroscopia de Ressonância Magnética , Ligação Proteica , Desnaturação Proteica , Anticorpos de Domínio Único/imunologia , Termodinâmica , alfa-Sinucleína/imunologia
15.
J Mol Biol ; 402(2): 326-43, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20620148

RESUMO

The aggregation of the intrinsically disordered protein α-synuclein to form fibrillar amyloid structures is intimately associated with a variety of neurological disorders, most notably Parkinson's disease. The molecular mechanism of α-synuclein aggregation and toxicity is not yet understood in any detail, not least because of the paucity of structural probes through which to study the behavior of such a disordered system. Here, we describe an investigation involving a single-domain camelid antibody, NbSyn2, selected by phage display techniques to bind to α-synuclein, including the exploration of its effects on the in vitro aggregation of the protein under a variety of conditions. We show using isothermal calorimetric methods that NbSyn2 binds specifically to monomeric α-synuclein with nanomolar affinity and by means of NMR spectroscopy that it interacts with the four C-terminal residues of the protein. This latter finding is confirmed by the determination of a crystal structure of NbSyn2 bound to a peptide encompassing the nine C-terminal residues of α-synuclein. The NbSyn2:α-synuclein interaction is mediated mainly by side-chain interactions while water molecules cross-link the main-chain atoms of α-synuclein to atoms of NbSyn2, a feature we believe could be important in intrinsically disordered protein interactions more generally. The aggregation behavior of α-synuclein at physiological pH, including the morphology of the resulting fibrillar structures, is remarkably unaffected by the presence of NbSyn2 and indeed we show that NbSyn2 binds strongly to the aggregated as well as to the soluble forms of α-synuclein. These results give strong support to the conjecture that the C-terminal region of the protein is not directly involved in the mechanism of aggregation and suggest that binding of NbSyn2 could be a useful probe for the identification of α-synuclein aggregation in vitro and possibly in vivo.


Assuntos
Anticorpos/química , Anticorpos/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animais , Afinidade de Anticorpos , Calorimetria , Camelídeos Americanos , Cristalografia por Raios X , Cinética , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Biblioteca de Peptídeos , Ligação Proteica , Desnaturação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...