Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Nat Rev Drug Discov ; 19(2): 131-148, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31748707

RESUMO

Drug-induced liver injury (DILI) is a patient-specific, temporal, multifactorial pathophysiological process that cannot yet be recapitulated in a single in vitro model. Current preclinical testing regimes for the detection of human DILI thus remain inadequate. A systematic and concerted research effort is required to address the deficiencies in current models and to present a defined approach towards the development of new or adapted model systems for DILI prediction. This Perspective defines the current status of available models and the mechanistic understanding of DILI, and proposes our vision of a roadmap for the development of predictive preclinical models of human DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Modelos Animais de Doenças , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Humanos , Valor Preditivo dos Testes
2.
Methods Mol Biol ; 1981: 291-312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016662

RESUMO

Since HepaRG cells can differentiate into well-polarized mature hepatocyte-like cells that synthesize, conjugate, and secrete bile acids, they represent an appropriate surrogate to primary human hepatocytes for investigations on drug-induced cholestasis mechanisms. In this chapter, culture conditions for obtaining HepaRG hepatocytes and the main methods used to detect cholestatic potential of drugs are described. Assays for evaluation of bile canaliculi dynamics and morphology are mainly based on time-lapse and phase-contrast microscopy analysis. Bile acid uptake, trafficking, and efflux are investigated using fluorescent probes. Individual bile acids are quantified in both culture media and cell layers by high-pressure liquid chromatography/tandem mass spectrometry. Preferential cellular accumulation of toxic hydrophobic bile acids is easily evidenced when exogenous primary and secondary bile acids are added to the culture medium.


Assuntos
Colestase/metabolismo , Colestase/patologia , Hepatócitos/citologia , Linhagem Celular , Células Cultivadas , Humanos , Microscopia de Contraste de Fase
3.
Toxicol In Vitro ; 58: 51-59, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30876886

RESUMO

Many drugs can induce liver injury, characterized by hepatocellular, cholestatic or mixed hepatocellular-cholestatic lesions. While an inflammatory stress is known to aggravate hepatocellular injury caused by some drugs much less evidence exists for cholestatic features. In this study, the influence of pro-inflammatory cytokines (IL-6, IL-1ß and TNF-α), either individually or combined, on cytotoxic and cholestatic properties of antibiotics was evaluated using differentiated HepaRG cells. Six antibiotics of various chemical structures and known to cause cholestasis and/or hepatocellular injury in clinic were investigated. Caspase-3 activity was increased with all these tested hepatotoxic drugs and except with erythromycin, was further augmented in presence of cytokines mainly when these were co-added as a mixture. TNF-α and IL-1ß aggravated cytotoxicity of TVX more than IL-6. Bile canaliculi (BC) dilatation induced by cholestatic drugs was increased by co-treatment with IL-6 and IL-1ß but not with TNF-α. Reduced accumulation of carboxy-dichlorofluorescein, a substrate of the multi-drug resistance-associated protein 2, in antibiotic-induced dilatated BC, was further extended in presence of individual or mixed cytokines. In conclusion, our data demonstrate that pro-inflammatory cytokines either individually or in mixture, can modulate cholestatic and/or cytotoxic responses to antibiotics and that the extent of these effects is dependent on the cytokine and the cholestatic antibiotic.


Assuntos
Antibacterianos/efeitos adversos , Canalículos Biliares/efeitos dos fármacos , Colestase/induzido quimicamente , Citocinas/farmacologia , Canalículos Biliares/fisiologia , Proteína C-Reativa/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colestase/metabolismo , Fluoresceínas/metabolismo , Humanos
4.
Toxicol Sci ; 168(2): 474-485, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629237

RESUMO

Drug-induced cholestasis is mostly intrahepatic and characterized by alterations of bile canaliculi dynamics and morphology as well as accumulation of bile acids (BAs) in hepatocytes. However, little information exists on first changes in BA content and profile induced by cholestatic drugs in human liver. In this study, we aimed to analyze the effects of a large set of cholestatic and noncholestatic drugs in presence of physiological serum concentrations and 60-fold higher levels of 9 main BAs on cellular accumulation of BAs using HepaRG hepatocytes. BAs were measured in cell layers (cells + bile canaliculi) and culture media using high-pressure liquid chromatography coupled with tandem mass spectrometry after 24 h-treatment. Comparable changes in total and individual BA levels were observed in cell layers and media from control and noncholestatic drug-treated cultures: unconjugated BAs were actively amidated and lithocholic acid (LCA) was entirely sulfated. In contrast, cellular accumulation of LCA and in addition, of the 2 other hydrophobic BAs, chenodeoxycholic acid and deoxycholic acid, was evidenced only with cholestatic compounds in presence of BA mixtures at normal and 60-fold serum levels, respectively, suggesting that LCA was the first BA to accumulate. Cellular accumulation of hydrophobic BAs was associated with inhibition of their amidation and for LCA, its sulfation. In conclusion, these results demonstrated that cellular accumulation of unconjugated hydrophobic BAs can be caused by various cholestatic drugs in human hepatocytes and suggest that their cellular detection, especially that of LCA, could represent a new strategy for evaluation of cholestatic potential of drugs and other chemicals.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colestase/induzido quimicamente , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Biomarcadores/metabolismo , Colestase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fígado/metabolismo , Preparações Farmacêuticas/química , Valor Preditivo dos Testes
5.
Free Radic Biol Med ; 115: 166-178, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191461

RESUMO

Endoplasmic reticulum (ER) stress has been associated with various drug-induced liver lesions but its participation in drug-induced cholestasis remains unclear. We first aimed at analyzing liver damage caused by various hepatotoxic antibiotics, including three penicillinase-resistant antibiotics (PRAs), i.e. flucloxacillin, cloxacillin and nafcillin, as well as trovafloxacin, levofloxacin and erythromycin, using human differentiated HepaRG cells and primary hepatocytes. All these antibiotics caused early cholestatic effects typified by bile canaliculi dilatation and reduced bile acid efflux within 2h and dose-dependent enhanced caspase-3 activity within 24h. PRAs induced the highest cholestatic effects at non cytotoxic concentrations. Then, molecular events involved in these lesions were analyzed. Early accumulation of misfolded proteins revealed by thioflavin-T fluorescence and associated with phosphorylation of the unfolded protein response sensors, eIF2α and/or IRE1α, was evidenced with all tested hepatotoxic antibiotics. Inhibition of ER stress markedly restored bile acid efflux and prevented bile canaliculi dilatation. Downstream of ER stress, ROS were also generated with high antibiotic concentrations. The protective HSP27-PI3K-AKT signaling pathway was activated only in PRA-treated cells and its inhibition increased ROS production and aggravated caspase-3 activity. Overall, our results demonstrate that (i) various antibiotics reported to cause cholestasis and hepatocellular injury in the clinic can also induce such effects in in vitro human hepatocytes; (ii) PRAs cause the strongest cholestatic effects in the absence of cytotoxicity; (iii) cholestatic features occur early through ER stress; (iv) cytotoxic lesions are observed later through ER stress-mediated ROS generation; and (v) activation of the HSP27-PI3K-AKT pathway protects from cytotoxic damage induced by PRAs only.


Assuntos
Antibacterianos/efeitos adversos , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colestase/metabolismo , Estresse do Retículo Endoplasmático , Hepatócitos/fisiologia , Estresse Oxidativo , Antibacterianos/administração & dosagem , Caspase 3/metabolismo , Linhagem Celular , Colestase/induzido quimicamente , Endorribonucleases/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
6.
Toxicol Sci ; 161(1): 48-57, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029322

RESUMO

A dynamic model based on ordinary differential equations that describes uptake, basolateral and canalicular export of taurocholic acid (TCA) in human HepaRG cells is presented. The highly reproducible inter-assay experimental data were used to reliably estimate model parameters. Primary human hepatocytes were similarly evaluated to establish a mathematical model, but with notably higher inter-assay differences in TCA clearance and bile canaliculi dynamics. By use of the HepaRG cell line, the simultaneous TCA clearance associated to basolateral uptake, canalicular and sinusoidal efflux, was predicted. The mathematical model accurately reproduced the dose-dependent inhibition of TCA clearance in the presence and absence of the prototypical cholestatic drugs cyclosporine A (CsA) and chlorpromazine. Rapid inhibition of TCA clearance and recovery were found to be major characteristics of CsA. Conversely, the action of chlorpromazine was described by slow onset of inhibition relative to inhibition of TCA clearance by CsA. The established mathematical model, validated by the use of these 2 prototypical cholestatic drugs and the integration of bile canalicular dynamics, provides an important development for the further study of human hepatobiliary function, through simultaneous temporal and vectorial membrane transport of bile acids in drug-induced cholestasis.


Assuntos
Ácidos e Sais Biliares/metabolismo , Hepatócitos/metabolismo , Modelos Teóricos , Transporte Biológico , Linhagem Celular , Clorpromazina/metabolismo , Clorpromazina/farmacologia , Ciclosporina/metabolismo , Ciclosporina/farmacologia , Eliminação Hepatobiliar , Hepatócitos/efeitos dos fármacos , Humanos , Cinética , Cultura Primária de Células
7.
Drug Metab Dispos ; 45(12): 1292-1303, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28928138

RESUMO

Drug-induced intrahepatic cholestasis is characterized by cellular accumulation of bile acids (BAs), whose mechanisms remain poorly understood. The present study aimed to analyze early and progressive alterations of BA profiles induced by cyclosporine A, chlorpromazine, troglitazone, tolcapone, trovafloxacin, and tacrolimus after 4-hour, 24-hour, and 6-day treatments of differentiated HepaRG cells. In BA-free medium, the potent cholestatic drugs cyclosporine A, chlorpromazine, and troglitazone reduced endogenous BA synthesis after 24 hours, whereas the rarely cholestatic drugs tolcapone, trovafloxacin, and tacrolimus reduced BA synthesis only after 6 days. In the presence of physiologic serum BA concentrations, cyclosporine A, chlorpromazine, and troglitazone induced early and preferential cellular accumulation of unconjugated lithocholic, deoxycholic, and chenodeoxycholic acids that increased 8- to 12-fold and 47- to 50-fold after 24 hours and 6 days, respectively. Accumulation of these hydrophobic BAs resulted from strong inhibition of amidation, and in addition, for lithocholic acid reduction of its sulfoconjugation, and was associated with variable alterations of uptake and efflux transporters. Trovafloxacin also caused BA accumulation, especially after 6 days, whereas tolcapone and tacrolimus were still without effect. However, when exogenous BAs were added to the medium at cholestatic serum concentrations, a 6-day treatment with all drugs resulted in cellular BA accumulation with higher folds of chenodeoxycholic and lithocholic acids. At the tested concentration, tolcapone had the lowest effect. These results bring the first demonstration that major cholestatic drugs can cause preferential and progressive in vitro cellular accumulation of unconjugated toxic hydrophobic BAs and bring new insights into mechanisms involved in drug-induced cellular accumulation of toxic BAs.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colestase/metabolismo , Amidas/metabolismo , Linhagem Celular , Ácido Quenodesoxicólico/metabolismo , Colestase/induzido quimicamente , Ácido Desoxicólico/metabolismo , Humanos , Ácido Litocólico/metabolismo , Fígado/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Sulfatos/metabolismo , Simportadores/metabolismo , Ácido Taurocólico/metabolismo
8.
Sci Rep ; 7(1): 1815, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500348

RESUMO

The penicillinase-resistant antibiotics (PRAs), especially the highly prescribed flucloxacillin, caused frequent liver injury via mechanisms that remain largely non-elucidated. We first showed that flucloxacillin, independently of cytotoxicity, could exhibit cholestatic effects in human hepatocytes in the absence of an immune reaction, that were typified by dilatation of bile canaliculi associated with impairment of the Rho-kinase signaling pathway and reduced bile acid efflux. Then, we analyzed the sequential molecular events involved in flucloxacillin-induced cholestasis. A crucial role of HSP27 by inhibiting Rho-kinase activity was demonstrated using siRNA and the specific inhibitor KRIBB3. HSP27 activation was dependent on the PKC/P38 pathway, and led downstream to activation of the PI3K/AKT pathway. Other PRAs induced similar cholestatic effects while non PRAs were ineffective. Our results demonstrate that PRAs can induce cholestatic features in human hepatocytes through HSP27 activation associated with PKC/P38 and PI3K/AKT signaling pathways and consequently support the conclusion that in clinic they can cause a non-immune-mediated cholestasis that is not restricted to patients possessing certain genetic determinants.


Assuntos
Colestase/etiologia , Colestase/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Inibidores de beta-Lactamases/efeitos adversos , Animais , Ácidos e Sais Biliares/metabolismo , Linhagem Celular , Sobrevivência Celular , Citocinas/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Fosforilação , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Quinases Associadas a rho/metabolismo
9.
Toxicol Sci ; 157(2): 451-464, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369585

RESUMO

Several endothelin receptor antagonists (ERAs) have been developed for the treatment of pulmonary arterial hypertension (PAH). Some of them have been related to clinical cases of hepatocellular injury (sitaxentan [SIT]) and/or cholestasis (bosentan [BOS]). We aimed to determine if ambrisentan (AMB) and macitentan (MAC), in addition to BOS and SIT, could potentially cause liver damage in man by use of human HepaRG cells. Our results showed that like BOS, MAC-induced cytotoxicity and cholestatic disorders characterized by bile canaliculi dilatation and impairment of myosin light chain kinase signaling. Macitentan also strongly inhibited taurocholic acid and carboxy-2',7'-dichlorofluorescein efflux while it had a much lower inhibitory effect on influx activity compared to BOS and SIT. Moreover, these three drugs caused decreased intracellular accumulation and parallel increased levels of total bile acids (BAs) in serum-free culture media. In addition, all drugs except AMB variably deregulated gene expression of BA transporters. In contrast, SIT was hepatotoxic without causing cholestatic damage, likely via the formation of reactive metabolites and AMB was not hepatotoxic. Together, our results show that some ERAs can be hepatotoxic and that the recently marketed MAC, structurally similar to BOS, can also cause cholestatic alterations in HepaRG cells. The absence of currently known or suspected cases of cholestasis in patients suffering from PAH treated with MAC is rationalized by the lower therapeutic doses and Cmax, and longer receptor residence time compared to BOS.


Assuntos
Colestase/induzido quimicamente , Antagonistas dos Receptores de Endotelina/toxicidade , Hepatócitos/efeitos dos fármacos , Receptores de Endotelina/metabolismo , Ácidos e Sais Biliares/metabolismo , Canalículos Biliares/efeitos dos fármacos , Canalículos Biliares/metabolismo , Canalículos Biliares/patologia , Miosinas Cardíacas/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colestase/metabolismo , Colestase/patologia , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Cadeias Leves de Miosina/metabolismo
10.
Drug Metab Dispos ; 44(11): 1780-1793, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27538918

RESUMO

Intrahepatic cholestasis represents 20%-40% of drug-induced injuries from which a large proportion remains unpredictable. We aimed to investigate mechanisms underlying drug-induced cholestasis and improve its early detection using human HepaRG cells and a set of 12 cholestatic drugs and six noncholestatic drugs. In this study, we analyzed bile canaliculi dynamics, Rho kinase (ROCK)/myosin light chain kinase (MLCK) pathway implication, efflux inhibition of taurocholate [a predominant bile salt export pump (BSEP) substrate], and expression of the major canalicular and basolateral bile acid transporters. We demonstrated that 12 cholestatic drugs classified on the basis of reported clinical findings caused disturbances of both bile canaliculi dynamics, characterized by either dilatation or constriction, and alteration of the ROCK/MLCK signaling pathway, whereas noncholestatic compounds, by contrast, had no effect. Cotreatment with ROCK inhibitor Y-27632 [4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] and MLCK activator calmodulin reduced bile canaliculi constriction and dilatation, respectively, confirming the role of these pathways in drug-induced intrahepatic cholestasis. By contrast, inhibition of taurocholate efflux and/or human BSEP overexpressed in membrane vesicles was not observed with all cholestatic drugs; moreover, examples of noncholestatic compounds were reportedly found to inhibit BSEP. Transcripts levels of major bile acid transporters were determined after 24-hour treatment. BSEP, Na+-taurocholate cotransporting polypeptide, and organic anion transporting polypeptide B were downregulated with most cholestatic and some noncholestatic drugs, whereas deregulation of multidrug resistance-associated proteins was more variable, probably mainly reflecting secondary effects. Together, our results show that cholestatic drugs consistently cause an early alteration of bile canaliculi dynamics associated with modulation of ROCK/MLCK and these changes are more specific than efflux inhibition measurements alone as predictive nonclinical markers of drug-induced cholestasis.


Assuntos
Canalículos Biliares/metabolismo , Colestase Intra-Hepática/metabolismo , Fígado/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Quinases Associadas a rho/metabolismo , Amidas/farmacologia , Ácidos e Sais Biliares/metabolismo , Canalículos Biliares/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Colestase Intra-Hepática/induzido quimicamente , Humanos , Fígado/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ácido Taurocólico/metabolismo
11.
Toxicol Lett ; 258: 71-86, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27313093

RESUMO

The role of reactive metabolites and inflammatory stress has been largely evoked in idiosyncratic hepatotoxicity of diclofenac (DCF); however mechanisms remain poorly understood. We aimed to evaluate the influence of liver cell phenotype on the hepatotoxicity of DCF combined or not with TNF-α using differentiated and undifferentiated HepaRG cells, and for comparison, HepG2 cells. Our results demonstrate that after a 24h-treatment metabolizing HepaRG cells were less sensitive to DCF than their undifferentiated non-metabolizing counterparts as shown by lower oxidative and endoplasmic reticulum stress responses and lower activation of caspase 9. Differentiated HepaRG cells were also less sensitive than HepG2 cells. Their lower sensitivity to DCF was related to their high content in glutathione transferases. DCF-induced apoptotic effects were potentiated by TNF-α only in death receptor-expressing differentiated HepaRG and HepG2 cells and were associated with marked activation of caspase 8. TNF-α co-treatment did not aggravate DCF-induced cholestatic features. Altogether, our results demonstrate that (i) lower sensitivity to DCF of differentiated HepaRG cells compared to their non-metabolically active counterparts was related to their high detoxifying capacity, giving support to the higher sensitivity of nonhepatic tissues than liver to this drug; (ii) TNF-α-potentiation of DCF cytotoxicity occurred only in death receptor-expressing cells.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Diclofenaco/farmacologia , Resistência a Medicamentos , Hepatócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Receptor fas/agonistas , Anti-Inflamatórios não Esteroides/agonistas , Anti-Inflamatórios não Esteroides/metabolismo , Biotransformação/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Diclofenaco/agonistas , Diclofenaco/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/metabolismo , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Microscopia de Contraste de Fase , Estresse Oxidativo/efeitos dos fármacos , Receptor fas/metabolismo
12.
Sci Rep ; 6: 24709, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27169750

RESUMO

Intrahepatic cholestasis represents a frequent manifestation of drug-induced liver injury; however, the mechanisms underlying such injuries are poorly understood. In this study of human HepaRG and primary hepatocytes, we found that bile canaliculi (BC) underwent spontaneous contractions, which are essential for bile acid (BA) efflux and require alternations in myosin light chain (MLC2) phosphorylation/dephosphorylation. Short exposure to 6 cholestatic compounds revealed that BC constriction and dilation were associated with disruptions in the ROCK/MLCK/myosin pathway. At the studied concentrations, cyclosporine A and chlorpromazine induced early ROCK activity, resulting in permanent MLC2 phosphorylation and BC constriction. However, fasudil reduced ROCK activity and caused rapid, substantial and permanent MLC2 dephosphorylation, leading to BC dilation. The remaining compounds (1-naphthyl isothiocyanate, deoxycholic acid and bosentan) caused BC dilation without modulating ROCK activity, although they were associated with a steady decrease in MLC2 phosphorylation via MLCK. These changes were associated with a common loss of BC contractions and failure of BA clearance. These results provide the first demonstration that cholestatic drugs alter BC dynamics by targeting the ROCK/MLCK pathway; in addition, they highlight new insights into the mechanisms underlying bile flow failure and can be used to identify new predictive biomarkers of drug-induced cholestasis.


Assuntos
Canalículos Biliares/efeitos dos fármacos , Miosinas Cardíacas/metabolismo , Clorpromazina/farmacologia , Ciclosporina/farmacologia , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Ácidos e Sais Biliares/metabolismo , Canalículos Biliares/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Microscopia de Fluorescência , Miosina Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Imagem com Lapso de Tempo , Proteína da Zônula de Oclusão-1/metabolismo
13.
Toxicol Sci ; 147(2): 573-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26198044

RESUMO

Alteration of bile acid (BA) profiles and secretion by cholestatic drugs represents a major clinical issue. Species differences exist in BA composition, synthesis, and regulation; however presently, there is no in vitro reproducible cell model to perform studies on BAs in humans. We have evaluated the capacity of the human HepaRG cell line to synthesize, conjugate, and secrete BAs, and analyzed changes in BA content and profile after cyclosporine A (CsA) treatment. Our data show that HepaRG cells produced normal BAs at daily levels comparable, though in different proportions, to those measured in primary human hepatocytes. A 4-h treatment with CsA led to BA accumulation and profile changes associated with occurrence of cholestatic features, while after 24 h BAs were decreased in cell layers and increased in media. The latter effects resulted from reduced function of BA uptake transporter (Na(+)-taurocholate cotransporting polypeptide), reduced expression of BA metabolizing enzymes, including cytochrome P4507A1, cytochrome P4508B1, and cytochrome P45027A1, and induction of alternative basolateral transporters. Noteworthy, HepaRG cells incubated in a 2% serum-supplemented medium showed dose-dependent accumulation of the cytotoxic BA lithocholic acid in a nonsulfoconjugated form associated with early inhibition of the canalicular transporter MRP2 and sulfotransferase 2A1. In summary, our data bring the first demonstration that an in vitro human liver cell line is able to produce and secrete conjugated BAs, and to accumulate endogenous BAs transiently, concomitantly to occurrence of various other cholestatic features following CsA treatment. Retention of the hydrophobic lithocholic acid supports its toxic role in drug-induced cholestasis. Overall, our results argue on the suitability of HepaRG cells for investigating mechanisms involved in the development of the disease.


Assuntos
Ácidos e Sais Biliares/toxicidade , Ciclosporina/farmacologia , Hepatócitos/efeitos dos fármacos , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/metabolismo , Western Blotting , Linhagem Celular , Colestanotriol 26-Mono-Oxigenase/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Hepatócitos/química , Humanos , Esteroide 12-alfa-Hidroxilase/metabolismo
14.
Toxicol In Vitro ; 30(1 Pt A): 19-26, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-25952325

RESUMO

The overall aim of Predict-IV (EU-funded collaborative project #202222) was to develop improved testing strategies for drug safety in the late discovery phase. One major focus was the prediction of hepatotoxicity as liver remains one of the major organ leading to failure in drug development, drug withdrawal and has a poor predictivity from animal experiments. In this overview we describe the use and applicability of the three cell models employed, i.e., primary rat hepatocytes, primary human hepatocytes and the human HepaRG cell line, using four model compounds, chlorpromazine, ibuprofen, cyclosporine A and amiodarone. This overview described the data generated on mode of action of liver toxicity after long-term repeat-dosing. Moreover we have quantified parent compound and its distribution in various in vitro compartments, which allowed us to develop biokinetic models where we could derive real exposure concentrations in vitro. In conclusion, the complex data set enables quantitative measurements that proved the concept that we can define human relevant free and toxic exposure levels in vitro. Further compounds have to be analyzed in a broader concentration range to fully exploit these promising results for improved prediction of hepatotoxicity and hazard assessment for humans.


Assuntos
Hepatócitos/efeitos dos fármacos , Preparações Farmacêuticas , Testes de Toxicidade/métodos , Animais , Linhagem Celular , União Europeia , Humanos , Ratos
15.
Toxicol Sci ; 145(1): 157-68, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25690737

RESUMO

The role of hepatobiliary transporters in drug-induced liver injury remains poorly understood. Various in vivo and in vitro biological approaches are currently used for studying hepatic transporters; however, appropriate localization and functional activity of these transporters are essential for normal biliary flow and drug transport. Human hepatocytes (HHs) are considered as the most suitable in vitro cell model but erratic availability and inter-donor functional variations limit their use. In this work, we aimed to compare localization of influx and efflux transporters and their functional activity in differentiated human HepaRG hepatocytes with fresh HHs in conventional (CCHH) and sandwich (SCHH) cultures. All tested influx and efflux transporters were correctly localized to canalicular [bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), multidrug resistance protein 1 (MDR1), and MDR3] or basolateral [Na(+)-taurocholate co-transporting polypeptide (NTCP) and MRP3] membrane domains and were functional in all models. Contrary to other transporters, NTCP and BSEP were less abundant and active in HepaRG cells, cellular uptake of taurocholate was 2.2- and 1.4-fold and bile excretion index 2.8- and 2.6-fold lower, than in SCHHs and CCHHs, respectively. However, when taurocholate canalicular efflux was evaluated in standard and divalent cation-free conditions in buffers or cell lysates, the difference between the three models did not exceed 9.3%. Interestingly, cell imaging showed higher bile canaliculi contraction/relaxation activity in HepaRG hepatocytes and larger bile canaliculi networks in SCHHs. Altogether, our results bring new insights in mechanisms involved in bile acids accumulation and excretion in HHs and suggest that HepaRG cells represent a suitable model for studying hepatobiliary transporters and drug-induced cholestasis.


Assuntos
Hepatócitos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Linhagem Celular , Humanos
16.
Toxicol In Vitro ; 30(1 Pt A): 27-35, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-25572481

RESUMO

Previous works have shown that differentiated human HepaRG cells can exhibit drug metabolism activities close to those of primary human hepatocytes for several weeks at confluence. The present study was designed to evaluate their long-term functional stability and their response to repeated daily drug treatments over a 14-day period, using a transcriptomic approach. Our data show that less than 1% of the expressed genes were markedly deregulated over this two weeks period and mainly included down-regulation of genes related to the cell cycle and from 3 days, overexpression of genes involved in xenobiotic and lipid metabolism. After daily treatment with the three PPAR agonists, fenofibrate, troglitazone and rosiglitazone qualitative and/or quantitative changes in gene profiling were observed depending on the compound and duration of treatment. The highest increase in the number of deregulated genes as a function of drug treatment was seen with rosiglitazone. The most up-regulated genes common across the three compounds were mainly related to lipid and xenobiotic metabolisms. All the data support the conclusion that human HepaRG cells have an exceptional functional stability at confluence and that they are suitable for investigations on chronic effects of drugs and other chemicals.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Linhagem Celular , Cromanos/farmacologia , Esquema de Medicação , Fenofibrato/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Análise em Microsséries , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Rosiglitazona , Tiazolidinedionas/farmacologia , Troglitazona
17.
Toxicol Lett ; 233(2): 172-86, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25578229

RESUMO

Common in vitro toxicity testing often neglects the fate and intracellular concentration of tested compounds, potentially limiting the predictability of in vitro results for in vivo extrapolation. We used in vitro long-term cultures of primary rat (PRH) and human hepatocytes (PHH) and HepaRG cells to characterise and model the biokinetic profile of ibuprofen (IBU) after single and daily repeated exposure (14 days) to two concentrations. A cross-model comparison was carried out at 100µM, roughly corresponding to the human therapeutic plasma concentration. Our results showed that IBU uptake was rapid and a dynamic equilibrium was reached within 1 or 2 days. All three cell systems efficiently metabolised IBU. In terms of species-differences, our data mirrored known in vivo results. Although no bioaccumulation was observed, IBU intracellular concentration was higher in PRH due to a 10-fold lower metabolic clearance compared to the human-derived cells. In HepaRG cells, IBU metabolism increased over time, but was not related to the treatment. In PHH, a low CYP2C9 activity, the major IBU-metabolising CYP, led to an increased cytotoxicity. A high inter-individual variability was seen in PHH, whereas HepaRG cells and PRH were more reproducible models. Although the concentrations of IBU in PRH over time differed from the concentrations found in human cells under similar exposure conditions.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Ibuprofeno/farmacocinética , Fígado/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Ibuprofeno/química , Ibuprofeno/toxicidade , Fígado/citologia , Masculino , Modelos Estatísticos , Cultura Primária de Células , Ratos , Ratos Wistar
18.
Toxicol In Vitro ; 30(1 Pt A): 52-61, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-25458484

RESUMO

Since drug induced liver injury is difficult to predict in animal models, more representative tests are needed to better evaluate these effects in humans. Existing in vitro systems hold great potential to detect hepatotoxicity of pharmaceuticals. In this study, the in vitro biokinetics of the model hepatotoxicant chlorpromazine (CPZ) were evaluated in three different liver cell systems after repeated exposure in order to incorporate repeated-dose testing into an in vitro assay. Primary rat and human hepatocytes, cultured in sandwich configuration and the human HepaRG cell line were treated daily with CPZ for 14 days. Samples were taken from medium, cells and well plastic at specific time points after the first and last exposure. The samples were analysed by HPLC-UV to determine the amount of CPZ in these samples. Based on cytotoxicity assays, the three models were tested at 1-2 µM CPZ, while the primary rat hepatocytes and the HepaRG cell line were in addition exposed to a higher concentration of 15-20 µM. Overall, the mass balance of CPZ decreased in the course of 24 h, indicating the metabolism of the compound within the cells. The largest decrease in parent compound was seen in the primary cultures; in the HepaRG cell cultures the mass balance only decreased to 50%. CPZ accumulated in the cells during the 14-day repeated exposure. Possible explanations for the accumulation of CPZ are a decrease in metabolism over time, inhibition of efflux transporters or binding to phospholipids. The biokinetics of CPZ differed between the three liver cell models and were influenced by specific cell properties as well as culture conditions. These results support the conclusion that in vitro biokinetics data are necessary to better interpret chemical-induced cytotoxicity data.


Assuntos
Clorpromazina/farmacocinética , Antagonistas de Dopamina/farmacocinética , Hepatócitos/metabolismo , Animais , Linhagem Celular , Clorpromazina/administração & dosagem , Antagonistas de Dopamina/administração & dosagem , Relação Dose-Resposta a Droga , Esquema de Medicação , Humanos , Ratos
19.
Toxicol In Vitro ; 30(1 Pt A): 36-51, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-25546373

RESUMO

The limited value of in vitro toxicity data for the in vivo extrapolation has been often attributed to the lack of kinetic data. Here the in vitro kinetics of amiodarone (AMI) and its mono-N-desethyl (MDEA) metabolite was determined and modelled in primary human hepatocytes (PHH) and HepaRG cells, after single and repeated administration of clinically relevant concentrations. AMI bioavailability was influenced by adsorption to the plastic and the presence of protein in the medium (e.g. 10% serum protein reduced the uptake by half in HepaRG cells). The cell uptake was quick (within 3h), AMI metabolism was efficient and a dynamic equilibrium was reached in about a week after multiple dosing. In HepaRG cells the metabolic clearance was higher than in PHH and increased over time, as well as CYP3A4. The interindividual variability in MDEA production in PHHs was not proportional to the differences in CYP3A4 activities, suggesting the involvement of other CYPs and/or AMI-related CYP inhibition. After repeated treatment AMI showed a slight potential for bioaccumulation, whereas much higher intracellular MDEA levels accumulated over time, especially in the HepaRG cells, associated with occurrence of phospholipidosis. The knowledge of in vitro biokinetics is important to transform an actual in vitro concentration-effect into an in vivo dose-effect relationship by using appropriate modelling, thus improving the in vitro-to-in vivo extrapolation.


Assuntos
Amiodarona/farmacocinética , Hepatócitos/efeitos dos fármacos , Amiodarona/metabolismo , Linhagem Celular , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Esquema de Medicação , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos
20.
Drug Metab Dispos ; 42(9): 1556-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25002748

RESUMO

Several factors are thought to be implicated in the occurrence of idiosyncratic adverse drug reactions. The present work aimed to question as to whether inflammation is a determinant factor in hepatic lesions induced by chlorpromazine (CPZ) using the human HepaRG cell line. An inflammation state was induced by a 24-hour exposure to proinflammatory cytokines interleukin-6 (IL-6) and IL-1ß; then the cells were simultaneously treated with CPZ and/or cytokine for 24 hours or daily for 5 days. The inflammatory response was assessed by induction of C-reactive protein and IL-8 transcripts and proteins as well as inhibition of CPZ metabolism and down-regulation of cytochrome 3A4 (CYP3A4) and CYP1A2 transcripts, two major cytochrome P450 (P450) enzymes involved in its metabolism. Most effects of cotreatments with cytokines and CPZ were amplified or only observed after five daily treatments; they mainly included increased cytotoxicity and overexpression of oxidative stress-related genes, decreased Na(+)-taurocholate cotransporting polypeptide mRNA levels and activity, a key transporter involved in bile acids uptake, and deregulation of several other transporters. However, CPZ-induced inhibition of taurocholic acid efflux and pericanalicular F-actin distribution were not affected. In addition, a time-dependent induction of phospholipidosis was noticed in CPZ-treated cells, without obvious influence of the inflammatory stress. In summary, our results show that an inflammatory state induced by proinflammatory cytokines increased cytotoxicity and enhanced some cholestatic features induced by the idiosyncratic drug CPZ in HepaRG cells. These changes, together with inhibition of P450 activities, could have important consequences if extrapolated to the in vivo situation.


Assuntos
Clorpromazina/efeitos adversos , Colestase/metabolismo , Inflamação/metabolismo , Actinas/genética , Actinas/metabolismo , Ácidos e Sais Biliares/genética , Ácidos e Sais Biliares/metabolismo , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Linhagem Celular , Colestase/induzido quimicamente , Colestase/genética , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Regulação para Baixo/genética , Humanos , Inflamação/genética , Interleucinas/genética , Interleucinas/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Estresse Oxidativo/genética , RNA Mensageiro/genética , Simportadores/genética , Simportadores/metabolismo , Ácido Taurocólico/genética , Ácido Taurocólico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...