Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hematol ; 99(3): 336-349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38165047

RESUMO

Mechanisms through which mature megakaryocytes (Mks) and their progenitors sense the bone marrow extracellular matrix to promote lineage differentiation in health and disease are still partially understood. We found PIEZO1, a mechanosensitive cation channel, to be expressed in mouse and human Mks. Human mutations in PIEZO1 have been described to be associated with blood cell disorders. Yet, a role for PIEZO1 in megakaryopoiesis and proplatelet formation has never been investigated. Here, we show that activation of PIEZO1 increases the number of immature Mks in mice, while the number of mature Mks and Mk ploidy level are reduced. Piezo1/2 knockout mice show an increase in Mk size and platelet count, both at basal state and upon marrow regeneration. Similarly, in human samples, PIEZO1 is expressed during megakaryopoiesis. Its activation reduces Mk size, ploidy, maturation, and proplatelet extension. Resulting effects of PIEZO1 activation on Mks resemble the profile in Primary Myelofibrosis (PMF). Intriguingly, Mks derived from Jak2V617F PMF mice show significantly elevated PIEZO1 expression, compared to wild-type controls. Accordingly, Mks isolated from bone marrow aspirates of JAK2V617F PMF patients show increased PIEZO1 expression compared to Essential Thrombocythemia. Most importantly, PIEZO1 expression in bone marrow Mks is inversely correlated with patient platelet count. The ploidy, maturation, and proplatelet formation of Mks from JAK2V617F PMF patients are rescued upon PIEZO1 inhibition. Together, our data suggest that PIEZO1 places a brake on Mk maturation and platelet formation in physiology, and its upregulation in PMF Mks might contribute to aggravating some hallmarks of the disease.


Assuntos
Mielofibrose Primária , Trombocitemia Essencial , Humanos , Animais , Camundongos , Megacariócitos/metabolismo , Mielofibrose Primária/genética , Medula Óssea , Trombopoese/genética , Trombocitemia Essencial/metabolismo , Plaquetas/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
2.
Blood Adv ; 7(15): 4003-4018, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37171626

RESUMO

Megakaryocytes (MKs) are the precursor cells of platelets, located in the bone marrow (BM). Once mature, they extend elongated projections named proplatelets through sinusoid vessels, emerging from the marrow stroma into the circulating blood. Not all signals from the microenvironment that regulate proplatelet formation are understood, particularly those from the BM biomechanics. We sought to investigate how MKs perceive and adapt to modifications of the stiffness of their environment. Although the BM is one of the softest tissue of the body, its rigidification results from excess fibronectin (FN), and other matrix protein deposition occur upon myelofibrosis. Here, we have shown that mouse MKs are able to detect the stiffness of a FN-coated substrate and adapt their morphology accordingly. Using a polydimethylsiloxane substrate with stiffness varying from physiological to pathological marrow, we found that a stiff matrix favors spreading, intracellular contractility, and FN fibrils assembly at the expense of proplatelet formation. Itgb3, but not Itgb1, is required for stiffness sensing, whereas both integrins are involved in fibrils assembly. In contrast, soft substrates promote proplatelet formation in an Itgb3-dependent manner, consistent with the ex vivo decrease in proplatelet formation and the in vivo decrease in platelet number in Itgb3-deficient mice. Our findings demonstrate the importance of environmental stiffness for MK functions with potential pathophysiological implications during pathologies that deregulate FN deposition and modulate stiffness in the marrow.


Assuntos
Fibronectinas , Megacariócitos , Animais , Camundongos , Plaquetas/metabolismo , Medula Óssea , Fibronectinas/metabolismo , Megacariócitos/metabolismo , Contagem de Plaquetas
3.
J Vis Exp ; (171)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34096921

RESUMO

The last stage of megakaryopoiesis leads to cytoplasmic extensions from mature megakaryocytes, the so-called proplatelets. Much has been learned about the proplatelet formation using in vitro-differentiated megakaryocytes; however, there is an increasing evidence that conventional culture systems do not faithfully recapitulate the differentiation/maturation process that takes places inside the bone marrow. In this manuscript, we present an explant method initially described in 1956 by Thiéry and Bessis to visualize megakaryocytes which have matured in their native environment, thus circumventing potential artifacts and misinterpretations. Fresh bone marrows are collected by flushing the femurs of mice, sliced into 0.5 mm cross sections, and placed in an incubation chamber at 37 °C containing a physiological buffer. Megakaryocytes become gradually visible at the explant periphery and are observed up to 6 hours under an inverted microscope coupled to a video camera. Over time, megakaryocytes change their shape, with some cells having a spherical form and others developing thick extensions or extending many thin proplatelets with extensive branching. Both qualitative and quantitative investigations are carried out. This method has the advantage of being simple, reproducible, and fast as numerous megakaryocytes are present, and classically half of them form proplatelets in 6 hours compared to 4 days for cultured mouse megakaryocytes. In addition to the study of mutant mice, an interesting application of this method is the straightforward evaluation of the pharmacological agents on the proplatelet extension process, without interfering with the differentiation process that may occur in cultures.


Assuntos
Plaquetas , Medula Óssea , Animais , Plaquetas/citologia , Diferenciação Celular , Células Cultivadas , Citoplasma , Megacariócitos/citologia , Camundongos
4.
J Cell Sci ; 133(20)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127839

RESUMO

The main function of blood platelets is to ensure hemostasis and prevent hemorrhages. The 1011 platelets needed daily are produced in a well-orchestrated process. However, this process is not yet fully understood and in vitro platelet production is still inefficient. Platelets are produced in the bone marrow by megakaryocytes, highly specialized precursor cells that extend cytoplasmic projections called proplatelets (PPTs) through the endothelial barrier of sinusoid vessels. In this Cell Science at a Glance article and the accompanying poster we discuss the mechanisms and pathways involved in megakaryopoiesis and platelet formation processes. We especially address the - still underestimated - role of the microenvironment of the bone marrow, and present recent findings on how PPT extension in vivo differs from that in vitro and entails different mechanisms. Finally, we recapitulate old but recently revisited evidence that - although bone marrow does produce megakaryocytes and PPTs - remodeling and the release of bona fide platelets, mainly occur in the downstream microcirculation.


Assuntos
Plaquetas , Megacariócitos , Medula Óssea , Citoplasma , Trombopoese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...