Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(7): e0271048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35857751

RESUMO

To address a major knowledge gap for flatback sea turtles (Natator depressus), a species endemic to Australia and considered 'Data Deficient' for IUCN Red List assessment, we present the first-ever skeletochronology-derived age and growth rate estimates for this species. Using a rare collection of bone samples gathered from across northern Australia, we applied skeletochronology and characterized the length-at-age relationship, established baseline growth rates from the hatchling to adult life stages, and produced empirical estimates of age-at- and size-at-sexual-maturation (ASM, SSM). We analyzed humeri from 74 flatback sea turtles ranging in body size from 6.0-96.0 cm curved carapace length (CCL), and recovered from Western Australia (n = 48), Eastern Australia (n = 13), central Australia (n = 8; Northern Territory n = 3, the Gulf of Carpentaria n = 5), and unknown locations (n = 5). We identified the onset of sexual maturity for 29 turtles, based on rapprochement growth patterns in the bones. Estimates for ASM ranged from 12.0 to 23.0 years (mean: 16.3 ± 0.53 SE), SSM ranged from 76.1 to 94.0 cm CCL (mean: 84.9 ± 0.90 SE), and maximum observed reproductive longevity was 31 years for a 45-year old male flatback. Growth was modeled as a smoothing spline fit to the size-at-age relationship and at the mean SSM (84.9 cm CCL) corresponded with a spline-predicted maturity age of 18 years (95% CI: 16 to 24), while mean nesting sizes reported in the literature (86.4 to 94 cm CCL) corresponded to estimated ages of 24+ years. A bootstrapped von Bertalanffy growth model was also applied and showed consistencies with the spline curve, yielding an estimated upper size limit, Linf, at 89.2 ± 0.04 cm (95% CI: 85.5 to 95.9 cm) with the intrinsic growth rate parameter, k, at 0.185 ± 0.0004 (0.16 to 0.22); at the same mean SSM (84.9 cm CCL) the estimated ASM was 16.3 ± 0.05 years (95% CI: 12.8 to 27.7 years). Lastly, four of the samples analyzed were collected from deceased adult females that had previous sizes known from on-going mark/recapture studies at nesting sites in Western Australia. The paired CCL data (measured at nesting and back-calculated) did not significantly differ (p = 0.875). This first skeletochronology study for flatback sea turtles generates valuable empirical estimates for ongoing conservation and management efforts.


Assuntos
Tartarugas , Fatores Etários , Exoesqueleto , Animais , Feminino , Masculino , Northern Territory , Reprodução
2.
Physiol Biochem Zool ; 88(2): 116-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25730267

RESUMO

Turtle embryos pause development before oviposition in a process known as preovipositional arrest. Embryonic development arrests due to hypoxia (low oxygen) in the maternal oviducts and resumes only after exposure to normoxia when eggs are laid. Recently, several studies have hypothesized that the prolonged periods of preovipositional arrest may have a detrimental effect on embryo survival and development after eggs are laid. We tested this hypothesis by comparing embryo survival (determined by white spot formation and hatching success) and hatchling fitness (measured by self-righting, crawling, and swimming ability) of flatback sea turtle (Natator depressus) eggs following incubation in hypoxic (∼ 1%) and normoxic (∼ 21%) treatments for 5 d immediately following oviposition. We also measured embryo survival and hatchling fitness when eggs were incubated in hyperoxic conditions (42% oxygen), to determine whether hyperoxia could improve developmental outcome or whether some consequence of oxidative stress might manifest. Eggs incubated in hypoxia remained arrested during the 5-d treatment, and 97.5% of the eggs successfully recommenced development after exposure to normoxia when the treatment finished. At treatment commencement, 100% and 97.5% of eggs in the hyperoxic and normoxic treatments, respectively, began developing. Although hatching success was significantly lower following hypoxia (15%) compared to normoxia (80%) and hyperoxia (85%), hatchings from the hypoxic treatment were larger (carapace length and width and plastron length) than normoxic hatchlings. Similarly, hypoxic hatchings also swam significantly faster than hyperoxic hatchlings. Considering larger hatchlings may have a greater chance of survival, the production of larger hatchings may offset the high cost (lower hatching success) when preovipositional arrest is prolonged. Hyperoxia does not appear to have deleterious consequences for development.


Assuntos
Tartarugas/embriologia , Aerobiose , Animais , Animais Recém-Nascidos , Constituição Corporal , Embrião não Mamífero/embriologia , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Oviposição , Oxigênio/metabolismo , Fatores de Tempo , Tartarugas/crescimento & desenvolvimento
3.
PLoS One ; 10(2): e0115679, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25671608

RESUMO

The critically endangered leaf-scaled (Aipysurus foliosquamaI) and short-nosed (A. apraefrontalis) sea snakes are currently recognised only from Ashmore and Hibernia reefs ~600km off the northwest Australian coast. Steep population declines in both species were documented over 15 years and neither has been sighted on dedicated surveys of Ashmore and Hibernia since 2001. We examine specimens of these species that were collected from coastal northwest Australian habitats up until 2010 (A.foliosquama) and 2012 (A. apraefrontalis) and were either overlooked or treated as vagrants in conservation assessments. Morphological variation and mitochondrial sequence data confirm the assignment of these coastal specimens to A. foliosquama (Barrow Island, and offshore from Port Hedland) and A.apraefrontalis (Exmouth Gulf, and offshore from Roebourne and Broome). Collection dates, and molecular and morphological variation between coastal and offshore specimens, suggest that the coastal specimens are not vagrants as previously suspected, but instead represent separate breeding populations. The newly recognised populations present another chance for leaf-scaled and short-nosed sea snakes, but coastal habitats in northwest Australia are widely threatened by infrastructure developments and sea snakes are presently omitted from environmental impact assessments for industry. Further studies are urgently needed to assess these species' remaining distributions, population structure, and extent of occurrence in protected areas.


Assuntos
Elapidae/anatomia & histologia , Elapidae/genética , Espécies em Perigo de Extinção , Animais , Austrália , Citocromos b/genética , DNA Mitocondrial/genética , Elapidae/classificação , Feminino , Masculino , Filogenia , Dinâmica Populacional
4.
Zootaxa ; 3869(4): 351-71, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25283923

RESUMO

Sea snakes (Elapidae, subfamilies Hydrophiinae and Laticaudinae) reach high species richness in the South China Sea and in the Australian region; however, most countries in the two regions still lack up-to-date checklists and identification tools for these snakes. We present an updated reviewed checklist and a new complete identification key to sea snakes in Australian waters. The identification key includes 29 species documented and 4 possibly occurring taxa and is based mostly on easy-to-use external characters. We find no evidence for breeding populations of Laticauda in Australian waters, but include the genus on the list of possibly occurring taxa. 


Assuntos
Elapidae/anatomia & histologia , Animais , Organismos Aquáticos , Austrália , Elapidae/classificação , Feminino , Serpentes/anatomia & histologia , Serpentes/classificação
5.
Mol Ecol ; 22(10): 2742-59, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23506038

RESUMO

The viviparous sea snakes (Hydrophiinae) are a young radiation of at least 62 species that display spectacular morphological diversity and high levels of local sympatry. To shed light on the mechanisms underlying sea snake diversification, we investigated recent speciation and eco-morphological differentiation in a clade of four nominal species with overlapping ranges in Southeast Asia and Australia. Analyses of morphology and stomach contents identified the presence of two distinct ecomorphs: a 'macrocephalic' ecomorph that reaches >2 m in length, has a large head and feeds on crevice-dwelling eels and gobies; and a 'microcephalic' ecomorph that rarely exceeds 1 m in length, has a small head and narrow fore-body and hunts snake eels in burrows. Mitochondrial sequences show a lack of reciprocal monophyly between ecomorphs and among putative species. However, individual assignment based on newly developed microsatellites separated co-distributed specimens into four significantly differentiated clusters corresponding to morphological species designations, indicating limited recent gene flow and progress towards speciation. A coalescent species tree (based on mitochondrial and nuclear sequences) and isolation-migration model (mitochondrial and microsatellite markers) suggest between one and three transitions between ecomorphs within the last approximately 1.2 million to approximately 840,000 years. In particular, the macrocephalic 'eastern' population of Hydrophis cyanocinctus and microcephalic H. melanocephalus appear to have diverged very recently and rapidly, resulting in major phenotypic differences and restriction of gene flow in sympatry. These results highlight the viviparous sea snakes as a promising system for speciation studies in the marine environment.


Assuntos
Elapidae/anatomia & histologia , Elapidae/genética , Especiação Genética , Cabeça/anatomia & histologia , Fenótipo , Filogenia , Animais , Sudeste Asiático , Austrália , Sequência de Bases , Teorema de Bayes , Primers do DNA/genética , DNA Mitocondrial/genética , Elapidae/fisiologia , Comportamento Alimentar/fisiologia , Conteúdo Gastrointestinal/química , Fluxo Gênico/genética , Genética Populacional , Repetições de Microssatélites/genética , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...