Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
2.
Clin Genet ; 104(3): 384-386, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37088467

RESUMO

Interestingly, disease-causing mutations in the ANK2 gene have been identified in patients with autism since 2012, though with no full clinical description. In this Research Letter, for the first time, we describe the detailed characteristics of a patient with autism caused by a new mutation in this gene. Our report is a first step to better understanding ANK2-related autism and will contribute to facilitating its further diagnosis.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Mutação , Fenótipo , Transtorno do Espectro Autista/genética , Anquirinas/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-34668453

RESUMO

Objectives: To describe a family with heterozygous P67S and D91A SOD1 mutations. Methods: The ALS profile of the proband was described. SOD1 gene sequencing was performed in the proband and his children. Results: The affected individual presented with progressive left peripheral facial palsy and slow progression with late limb involvement. Unequivocal upper and lower motor neuron signs were present, together with diffuse denervation at myography. The absence of trigeminal involvement excluded a FOSMN syndrome. Pedigree analysis did not show any other ALS case in the family. Genetic analysis of this patient showed P67S and D91A SOD1 mutations. The genetic analysis of the children showed that the mutations were each one carried by a different chromosome. Conclusions: P67S SOD1 mutation has been described in several ALS cases, either with familial or apparently sporadic ALS. The mutation is located in a mutational hotspot and was predicted pathogenic by in silico prediction software. The study of phylogenetic data show that at this codon, the proline is highly conserved throughout species reinforcing causality. Conversely, the D91A variant is known to have a recessive influence. Unilateral motor facial involvement, even after several years, in an ALS patient is unusual. The present case with compound heterozygosity and unusual onset in a patient with apparently sporadic ALS, widens the clinical spectrum of the disease and adds further arguments to support the systematic genetic screening of all ALS cases in referral ALS clinics.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/diagnóstico , Criança , Humanos , Mutação/genética , Filogenia , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
4.
Genet Med ; 23(11): 2160-2170, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34234304

RESUMO

PURPOSE: Diagnosis of inherited ataxia and related diseases represents a real challenge given the tremendous heterogeneity and clinical overlap of the various causes. We evaluated the efficacy of molecular diagnosis of these diseases by sequencing a large cohort of undiagnosed families. METHODS: We analyzed 366 unrelated consecutive patients with undiagnosed ataxia or related disorders by clinical exome-capture sequencing. In silico analysis was performed with an in-house pipeline that combines variant ranking and copy-number variant (CNV) searches. Variants were interpreted according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. RESULTS: We established the molecular diagnosis in 46% of the cases. We identified 35 mildly affected patients with causative variants in genes that are classically associated with severe presentations. These cases were explained by the occurrence of hypomorphic variants, but also rarely suspected mechanisms such as C-terminal truncations and translation reinitiation. CONCLUSION: A significant fraction of the clinical heterogeneity and phenotypic overlap is explained by hypomorphic variants that are difficult to identify and not readily predicted. The hypomorphic C-terminal truncation and translation reinitiation mechanisms that we identified may only apply to few genes, as it relies on specific domain organization and alterations. We identified PEX10 and FASTKD2 as candidates for translation reinitiation accounting for mild disease presentation.


Assuntos
Ataxia Cerebelar , Genômica , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Humanos , Peroxinas , Receptores Citoplasmáticos e Nucleares , Estados Unidos , Sequenciamento do Exoma
5.
N Engl J Med ; 384(25): 2406-2417, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34161705

RESUMO

BACKGROUND: Autophagy is the major intracellular degradation route in mammalian cells. Systemic ablation of core autophagy-related (ATG) genes in mice leads to embryonic or perinatal lethality, and conditional models show neurodegeneration. Impaired autophagy has been associated with a range of complex human diseases, yet congenital autophagy disorders are rare. METHODS: We performed a genetic, clinical, and neuroimaging analysis involving five families. Mechanistic investigations were conducted with the use of patient-derived fibroblasts, skeletal muscle-biopsy specimens, mouse embryonic fibroblasts, and yeast. RESULTS: We found deleterious, recessive variants in human ATG7, a core autophagy-related gene encoding a protein that is indispensable to classical degradative autophagy. Twelve patients from five families with distinct ATG7 variants had complex neurodevelopmental disorders with brain, muscle, and endocrine involvement. Patients had abnormalities of the cerebellum and corpus callosum and various degrees of facial dysmorphism. These patients have survived with impaired autophagic flux arising from a diminishment or absence of ATG7 protein. Although autophagic sequestration was markedly reduced, evidence of basal autophagy was readily identified in fibroblasts and skeletal muscle with loss of ATG7. Complementation of different model systems by deleterious ATG7 variants resulted in poor or absent autophagic function as compared with the reintroduction of wild-type ATG7. CONCLUSIONS: We identified several patients with a neurodevelopmental disorder who have survived with a severe loss or complete absence of ATG7, an essential effector enzyme for autophagy without a known functional paralogue. (Funded by the Wellcome Centre for Mitochondrial Research and others.).


Assuntos
Anormalidades Múltiplas/genética , Ataxia/genética , Proteína 7 Relacionada à Autofagia/genética , Autofagia/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia/fisiologia , Células Cultivadas , Cerebelo/anormalidades , Simulação por Computador , Face/anormalidades , Feminino , Fibroblastos , Genes Recessivos , Humanos , Lactente , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Malformações do Sistema Nervoso/genética , Linhagem , Fenótipo
6.
Brain ; 144(5): 1467-1481, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33889951

RESUMO

Peroxiredoxin 3 (PRDX3) belongs to a superfamily of peroxidases that function as protective antioxidant enzymes. Among the six isoforms (PRDX1-PRDX6), PRDX3 is the only protein exclusively localized to the mitochondria, which are the main source of reactive oxygen species. Excessive levels of reactive oxygen species are harmful to cells, inducing mitochondrial dysfunction, DNA damage, lipid and protein oxidation and ultimately apoptosis. Neuronal cell damage induced by oxidative stress has been associated with numerous neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Leveraging the large aggregation of genomic ataxia datasets from the PREPARE (Preparing for Therapies in Autosomal Recessive Ataxias) network, we identified recessive mutations in PRDX3 as the genetic cause of cerebellar ataxia in five unrelated families, providing further evidence for oxidative stress in the pathogenesis of neurodegeneration. The clinical presentation of individuals with PRDX3 mutations consists of mild-to-moderate progressive cerebellar ataxia with concomitant hyper- and hypokinetic movement disorders, severe early-onset cerebellar atrophy, and in part olivary and brainstem degeneration. Patient fibroblasts showed a lack of PRDX3 protein, resulting in decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity. Moreover, PRDX3 knockdown in cerebellar medulloblastoma cells resulted in significantly decreased cell viability, increased H2O2 levels and increased susceptibility to apoptosis triggered by reactive oxygen species. Pan-neuronal and pan-glial in vivo models of Drosophila revealed aberrant locomotor phenotypes and reduced survival times upon exposure to oxidative stress. Our findings reveal a central role for mitochondria and the implication of oxidative stress in PRDX3 disease pathogenesis and cerebellar vulnerability and suggest targets for future therapeutic approaches.


Assuntos
Ataxia Cerebelar/genética , Estresse Oxidativo/genética , Peroxirredoxina III/genética , Adulto , Animais , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/patologia , Drosophila , Feminino , Humanos , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Linhagem
7.
J Neurol Neurosurg Psychiatry ; 92(9): 942-949, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33785574

RESUMO

OBJECTIVE: Mutations in superoxide dismutase 1 gene (SOD1), encoding copper/zinc superoxide dismutase protein, are the second most frequent high penetrant genetic cause for amyotrophic lateral sclerosis (ALS) motor neuron disease in populations of European descent. More than 200 missense variants are reported along the SOD1 protein. To limit the production of these aberrant and deleterious SOD1 species, antisense oligonucleotide approaches have recently emerged and showed promising effects in clinical trials. To offer the possibility to any patient with SOD1-ALS to benefit of such a gene therapy, it is necessary to ascertain whether any variant of unknown significance (VUS), detected for example in SOD1 non-coding sequences, is pathogenic. METHODS: We analysed SOD1 mutation distribution after SOD1 sequencing in a large cohort of 470 French familial ALS (fALS) index cases. RESULTS: We identified a total of 27 SOD1 variants in 38 families including two SOD1 variants located in nearsplice or intronic regions of the gene. The pathogenicity of the c.358-10T>G nearsplice SOD1 variant was corroborated based on its high frequency (as the second most frequent SOD1 variant) in French fALS, the segregation analysis confirmed in eight affected members of a large pedigree, the typical SOD1-related phenotype observed (with lower limb onset and prominent lower motor neuron involvement), and findings on postmortem tissues showing SOD1 misaccumulation. CONCLUSIONS: Our results highlighted nearsplice/intronic mutations in SOD1 are responsible for a significant portion of French fALS and suggested the systematic analysis of the SOD1 mRNA sequence could become the method of choice for SOD1 screening, not to miss these specific cases.


Assuntos
Esclerose Lateral Amiotrófica/genética , Mutação , Linhagem , Superóxido Dismutase-1/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise Mutacional de DNA , Feminino , Testes Genéticos , Terapia Genética , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
8.
Sci Rep ; 10(1): 20738, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244158

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most common and severe adult-onset motoneuron disease and has currently no effective therapy. Approximately 20% of familial ALS cases are caused by dominantly-inherited mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1), which represents one of the most frequent genetic cause of ALS. Despite the overwhelming majority of ALS-causing missense mutations in SOD1, a minority of premature termination codons (PTCs) have been identified. mRNA harboring PTCs are known to be rapidly degraded by nonsense-mediated mRNA decay (NMD), which limits the production of truncated proteins. The rules of NMD surveillance varying with PTC location in mRNA, we analyzed the localization of PTCs in SOD1 mRNA to evaluate whether or not those PTCs can be triggered to degradation by the NMD pathway. Our study shows that all pathogenic PTCs described in SOD1 so far can theoretically escape the NMD, resulting in the production of truncated protein. This finding supports the hypothesis that haploinsufficiency is not an underlying mechanism of SOD1 mutant-associated ALS and suggests that PTCs found in the regions that trigger NMD are not pathogenic. Such a consideration is particularly important since the availability of SOD1 antisense strategies, in view of variant treatment assignment.


Assuntos
Esclerose Lateral Amiotrófica/genética , Códon sem Sentido/genética , Códon de Terminação/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Superóxido Dismutase-1/genética , Humanos , Mutação de Sentido Incorreto/genética , RNA Mensageiro/genética
9.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32948071

RESUMO

Mutations in the copper zinc superoxide dismutase 1 (SOD1) gene are the second most frequent cause of familial amyotrophic lateral sclerosis (ALS). Nearly 200 mutations of this gene have been described so far. We report all SOD1 pathogenic variants identified in patients followed in the single ALS center of Lyon, France, between 2010 and 2020. Twelve patients from 11 unrelated families are described, including two families with the not yet described H81Y and D126N mutations. Splice site mutations were detected in two families. We discuss implications concerning genetic screening of SOD1 gene in familial and sporadic ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Mutação de Sentido Incorreto , Mutação Puntual , Superóxido Dismutase-1/genética , Adulto , Idoso , Esclerose Lateral Amiotrófica/enzimologia , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Avaliação de Sintomas
10.
Sci Rep ; 10(1): 9861, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555262

RESUMO

Non-Invasive Prenatal Diagnosis (NIPD), based on the analysis of circulating cell-free fetal DNA (cff-DNA), is successfully implemented for an increasing number of monogenic diseases. However, technical issues related to cff-DNA characteristics remain, and not all mutations can be screened with this method, particularly triplet expansion mutations that frequently concern prenatal diagnosis requests. The objective of this study was to develop an approach to isolate and analyze Circulating Trophoblastic Fetal Cells (CFTCs) for NIPD of monogenic diseases caused by triplet repeat expansion or point mutations. We developed a method for CFTC isolation based on DEPArray sorting and used Huntington's disease as the clinical model for CFTC-based NIPD. Then, we investigated whether CFTC isolation and Whole Genome Amplification (WGA) could be used for NIPD in couples at risk of transmitting different monogenic diseases. Our data show that the allele drop-out rate was 3-fold higher in CFTCs than in maternal cells processed in the same way. Moreover, we give new insights into CFTCs by compiling data obtained by extensive molecular testing by microsatellite multiplex PCR genotyping and by WGA followed by mini-exome sequencing. CFTCs appear to be often characterized by a random state of genomic degradation.


Assuntos
Feto/citologia , Diagnóstico Pré-Natal/métodos , Análise de Célula Única , Trofoblastos/citologia , Separação Celular , Estudos de Viabilidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/genética , Repetições de Trinucleotídeos/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-32499327

RESUMO

OBJECTIVE: To describe the clinical and radiologic neurologic characteristics of patients with cytotoxic T-lymphocyte antigen-4 (CTLA4) haploinsufficiency. METHODS: Three patients from 2 families had neurologic manifestations in the context of CTLA4 haploinsufficiency. Their clinical and MRI findings are presented. RESULTS: A 16-year-old boy with a previous diagnosis of combined immunodeficiency presented with severe recurrent episodes of headaches, motor deficit, and seizures associated with waxing and waning gadolinium-enhancing FLAIR cortical/juxtacortical hyperintensities. His sister, who also had combined immunodeficiency, had a brain MRI when she was aged 13 years due to recent headaches and transient right hemianopsia. It revealed a gadolinium-enhancing left occipital white matter hyperintensity. Another 49-year-old woman had progressive visual loss and cerebellar ataxia in the context of recurrent pulmonary infections. All 3 patients were found to have inherited CTLA4 haploinsufficiency. Patient 1's general condition and neurologic manifestations were completely controlled with abatacept (CTLA4-Ig). CONCLUSIONS: These cases suggest that in addition to the variable clinical penetrance and wide spectrum of CTLA4 haploinsufficiency, its neurologic spectrum is broad, ranging from recurrent tumefactive lesions to progressive deficits including cerebellar ataxia and optic atrophy with leukoencephalopathy. These phenotypes must be recognized, and should lead to a complete immunologic workup, because potentially effective targeted immunotherapy exists.


Assuntos
Encefalopatias , Antígeno CTLA-4/genética , Haploinsuficiência/genética , Adolescente , Encefalopatias/genética , Encefalopatias/patologia , Encefalopatias/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
13.
J Neurol ; 267(1): 203-213, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31612321

RESUMO

ATP8A2-related disorders are autosomal recessive conditions that associate encephalopathy with or without hypotonia, psychomotor delay, abnormal movements, chorea, tremor, optic atrophy and cerebellar atrophy (CARMQ4). Through a multi-centric collaboration, we identified six point mutations (one splice site and five missense mutations) involving ATP8A2 in six individuals from five families. Two patients from one family with the homozygous p.Gly585Val mutation had a milder presentation without encephalopathy. Expression and functional studies of the missense mutations demonstrated that protein levels of four of the five missense variants were very low and lacked phosphatidylserine-activated ATPase activity. One variant p.Ile215Leu, however, expressed at normal levels and displayed phospholipid-activated ATPase activity similar to the non-mutated protein. We therefore expand for the first time the phenotype related to ATP8A2 mutations to less severe forms characterized by cerebellar ataxia without encephalopathy and suggest that ATP8A2 should be analyzed for all cases of syndromic or non-syndromic recessive or sporadic ataxia.


Assuntos
Adenosina Trifosfatases/genética , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Ataxia Cerebelar/fisiopatologia , Proteínas de Transferência de Fosfolipídeos/genética , Adulto , Criança , Pré-Escolar , Consanguinidade , Feminino , Genes Recessivos , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Mutação Puntual
14.
Fetal Diagn Ther ; 45(6): 403-412, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30121677

RESUMO

BACKGROUND: Analysis of cell-free fetal DNA in maternal plasma is very promising for early diagnosis of monogenic diseases. However, it has been limited by the need to set up patient- or disease-specific custom-made approaches. Here we propose a universal test based on fluorescent multiplex PCR and size fragment analysis for an indirect diagnosis of cystic fibrosis (CF). METHODS: The test, based on haplotyping, includes nine intra- and extragenic short tandem repeats of the CFTR locus, the coamplification of p.Phe508del (the most frequent mutation in CF patients worldwide), and a specific SRY sequence. The assay is able to determine the inherited paternal allele. RESULTS: Our simple approach was successfully applied to 30 couples and provided clear results from the maternal plasma. The mean rate of informative markers was sufficient to propose it for use in indirect diagnosis. CONCLUSIONS: This noninvasive prenatal diagnosis test, focused on indirect diagnosis of CF, offers many advantages over current methods: it is simple, rapid, and cost-effective. It allows for the testing of a large number of couples with high risk of CF, whatever the familial mutation of the CFTR gene. It provides an alternative method to reduce the number of invasive tests.


Assuntos
Ácidos Nucleicos Livres/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Diagnóstico Pré-Natal/métodos , Regulador de Condutância Transmembrana em Fibrose Cística/química , Haplótipos , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos
15.
JAMA Neurol ; 75(10): 1234-1245, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29913018

RESUMO

Importance: Movement disorders are characterized by a marked genotypic and phenotypic heterogeneity, complicating diagnostic work in clinical practice and molecular diagnosis. Objective: To develop and evaluate a targeted sequencing approach using a customized panel of genes involved in movement disorders. Design, Setting and Participants: We selected 127 genes associated with movement disorders to create a customized enrichment in solution capture array. Targeted high-coverage sequencing was applied to DNA samples taken from 378 eligible patients at 1 Luxembourgian, 1 Algerian, and 25 French tertiary movement disorder centers between September 2014 and July 2016. Patients were suspected of having inherited movement disorders because of early onset, family history, and/or complex phenotypes. They were divided in 5 main movement disorder groups: parkinsonism, dystonia, chorea, paroxysmal movement disorder, and myoclonus. To compare approaches, 23 additional patients suspected of having inherited cerebellar ataxia were included, on whom whole-exome sequencing (WES) was done. Data analysis occurred from November 2015 to October 2016. Main Outcomes and Measures: Percentages of individuals with positive diagnosis, variants of unknown significance, and negative cases; mutational frequencies and clinical phenotyping of genes associated with movement disorders. Results: Of the 378 patients (of whom 208 were male [55.0%]), and with a median (range) age at disease onset of 31 (0-84) years, probable pathogenic variants were identified in 83 cases (22.0%): 46 patients with parkinsonism (55% of 83 patients), 21 patients (25.3%) with dystonia, 7 patients (8.4%) with chorea, 7 patients (8.4%) with paroxysmal movement disorders, and 2 patients (2.4%) with myoclonus as the predominant phenotype. Some genes were mutated in several cases in the cohort. Patients with pathogenic variants were significantly younger (median age, 27 years; interquartile range [IQR], 5-36 years]) than the patients without diagnosis (median age, 35 years; IQR, 15-46 years; P = .04). Diagnostic yield was significantly lower in patients with dystonia (21 of 135; 15.6%; P = .03) than in the overall cohort. Unexpected genotype-phenotype correlations in patients with pathogenic variants deviating from the classic phenotype were highlighted, and 49 novel probable pathogenic variants were identified. The WES analysis of the cohort of 23 patients with cerebellar ataxia led to an overall diagnostic yield of 26%, similar to panel analysis but at a cost 6 to 7 times greater. Conclusions and Relevance: High-coverage sequencing panel for the delineation of genes associated with movement disorders was efficient and provided a cost-effective diagnostic alternative to whole-exome and whole-genome sequencing.


Assuntos
Sequenciamento do Exoma/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/genética , Análise de Sequência de DNA/métodos , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Ataxia Cerebelar/genética , Criança , Pré-Escolar , Coreia/diagnóstico , Coreia/genética , Distúrbios Distônicos/genética , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mioclonia/diagnóstico , Mioclonia/genética , Transtornos Parkinsonianos/genética , Fenótipo , Estudos Prospectivos , Análise de Sequência de DNA/economia , Sequenciamento do Exoma/economia , Adulto Jovem
16.
Am J Hum Genet ; 102(5): 744-759, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656859

RESUMO

RORα, the RAR-related orphan nuclear receptor alpha, is essential for cerebellar development. The spontaneous mutant mouse staggerer, with an ataxic gait caused by neurodegeneration of cerebellar Purkinje cells, was discovered two decades ago to result from homozygous intragenic Rora deletions. However, RORA mutations were hitherto undocumented in humans. Through a multi-centric collaboration, we identified three copy-number variant deletions (two de novo and one dominantly inherited in three generations), one de novo disrupting duplication, and nine de novo point mutations (three truncating, one canonical splice site, and five missense mutations) involving RORA in 16 individuals from 13 families with variable neurodevelopmental delay and intellectual disability (ID)-associated autistic features, cerebellar ataxia, and epilepsy. Consistent with the human and mouse data, disruption of the D. rerio ortholog, roraa, causes significant reduction in the size of the developing cerebellum. Systematic in vivo complementation studies showed that, whereas wild-type human RORA mRNA could complement the cerebellar pathology, missense variants had two distinct pathogenic mechanisms of either haploinsufficiency or a dominant toxic effect according to their localization in the ligand-binding or DNA-binding domains, respectively. This dichotomous direction of effect is likely relevant to the phenotype in humans: individuals with loss-of-function variants leading to haploinsufficiency show ID with autistic features, while individuals with de novo dominant toxic variants present with ID, ataxia, and cerebellar atrophy. Our combined genetic and functional data highlight the complex mutational landscape at the human RORA locus and suggest that dual mutational effects likely determine phenotypic outcome.


Assuntos
Transtorno Autístico/genética , Ataxia Cerebelar/genética , Genes Dominantes , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Adolescente , Adulto , Idoso de 80 Anos ou mais , Alelos , Animais , Transtorno Autístico/complicações , Encéfalo/patologia , Ataxia Cerebelar/complicações , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Modelos Animais de Doenças , Feminino , Teste de Complementação Genética , Humanos , Deficiência Intelectual/complicações , Larva/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Síndrome , Peixe-Zebra/genética
18.
Neurol Genet ; 4(1): e217, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29473051

RESUMO

OBJECTIVE: To describe the clinico-radiological phenotype of 3 patients harboring a homozygous novel AP4M1 pathogenic mutation. METHODS: The 3 patients from an inbred family who exhibited early-onset developmental delay, tetraparesis, juvenile motor function deterioration, and intellectual deficiency were investigated by magnetic brain imaging using T1-weighted, T2-weighted, T2*-weighted, fluid-attenuated inversion recovery, susceptibility weighted imaging (SWI) sequences. Whole-exome sequencing was performed on the 3 patients. RESULTS: In the 3 patients, brain imaging identified the same pattern of bilateral SWI hyposignal of the globus pallidus, concordant with iron accumulation. A novel homozygous nonsense mutation was identified in AP4M1, segregating with the disease and leading to truncation of half of the adap domain of the protein. CONCLUSIONS: Our results suggest that AP4M1 represents a new candidate gene that should be considered in the neurodegeneration with brain iron accumulation (NBIA) spectrum of disorders and highlight the intersections between hereditary spastic paraplegia and NBIA clinical presentations.

19.
JAMA Neurol ; 75(4): 495-502, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29356829

RESUMO

Importance: Ataxia with oculomotor apraxia type 1 (AOA1) is an autosomal recessive cerebellar ataxia due to mutations in the aprataxin gene (APTX) that is characterized by early-onset cerebellar ataxia, oculomotor apraxia, axonal motor neuropathy, and eventual decrease of albumin serum levels. Objectives: To improve the clinical, biomarker, and molecular delineation of AOA1 and provide genotype-phenotype correlations. Design, Setting, and Participants: This retrospective analysis included the clinical, biological (especially regarding biomarkers of the disease), electrophysiologic, imaging, and molecular data of all patients consecutively diagnosed with AOA1 in a single genetics laboratory from January 1, 2002, through December 31, 2014. Data were analyzed from January 1, 2015, through January 31, 2016. Main Outcomes and Measures: The clinical, biological, and molecular spectrum of AOA1 and genotype-phenotype correlations. Results: The diagnosis of AOA1 was confirmed in 80 patients (46 men [58%] and 34 women [42%]; mean [SD] age at onset, 7.7 [7.4] years) from 51 families, including 57 new (with 8 new mutations) and 23 previously described patients. Elevated levels of α-fetoprotein (AFP) were found in 33 patients (41%); hypoalbuminemia, in 50 (63%). Median AFP level was higher in patients with AOA1 (6.0 ng/mL; range, 1.1-17.0 ng/mL) than in patients without ataxia (3.4 ng/mL; range, 0.8-17.2 ng/mL; P < .01). Decreased albumin levels (ρ = -0.532) and elevated AFP levels (ρ = 0.637) were correlated with disease duration. The p.Trp279* mutation, initially reported as restricted to the Portuguese founder haplotype, was discovered in 53 patients with AOA1 (66%) with broad white racial origins. Oculomotor apraxia was found in 49 patients (61%); polyneuropathy, in 74 (93%); and cerebellar atrophy, in 78 (98%). Oculomotor apraxia correlated with the severity of ataxia and mutation type, being more frequent with deletion or truncating mutations (83%) than with presence of at least 1 missense variant (17%; P < .01). Mean (SD) age at onset was higher for patients with at least 1 missense mutation (17.7 [11.4] vs 5.2 [2.6] years; P < .001). Conclusions and Relevance: The AFP level, slightly elevated in a substantial fraction of patients, may constitute a new biomarker for AOA1. Oculomotor apraxia may be an optional finding in AOA1 and correlates with more severe disease. The p.Trp279* mutation is the most frequent APTX mutation in the white population. APTX missense mutations may be associated with a milder phenotype.


Assuntos
Apraxias/congênito , Ataxia/genética , Síndrome de Cogan/genética , Proteínas de Ligação a DNA/genética , Estudos de Associação Genética , Mutação/genética , Proteínas Nucleares/genética , Adolescente , Adulto , Apraxias/complicações , Apraxias/diagnóstico por imagem , Apraxias/genética , Ataxia/complicações , Ataxia/diagnóstico por imagem , Síndrome de Cogan/complicações , Síndrome de Cogan/diagnóstico por imagem , Avaliação da Deficiência , Feminino , Humanos , Cooperação Internacional , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Canais de Cátion TRPC/genética , Adulto Jovem , alfa-Fetoproteínas/metabolismo
20.
Brain ; 141(1): 72-84, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228183

RESUMO

The hereditary spastic paraplegias are an expanding and heterogeneous group of disorders characterized by spasticity in the lower limbs. Plasma biomarkers are needed to guide the genetic testing of spastic paraplegia. Spastic paraplegia type 5 (SPG5) is an autosomal recessive spastic paraplegia due to mutations in CYP7B1, which encodes a cytochrome P450 7α-hydroxylase implicated in cholesterol and bile acids metabolism. We developed a method based on ultra-performance liquid chromatography electrospray tandem mass spectrometry to validate two plasma 25-hydroxycholesterol (25-OHC) and 27-hydroxycholesterol (27-OHC) as diagnostic biomarkers in a cohort of 21 patients with SPG5. For 14 patients, SPG5 was initially suspected on the basis of genetic analysis, and then confirmed by increased plasma 25-OHC, 27-OHC and their ratio to total cholesterol. For seven patients, the diagnosis was initially based on elevated plasma oxysterol levels and confirmed by the identification of two causal CYP7B1 mutations. The receiver operating characteristic curves analysis showed that 25-OHC, 27-OHC and their ratio to total cholesterol discriminated between SPG5 patients and healthy controls with 100% sensitivity and specificity. Taking advantage of the robustness of these plasma oxysterols, we then conducted a phase II therapeutic trial in 12 patients and tested whether candidate molecules (atorvastatin, chenodeoxycholic acid and resveratrol) can lower plasma oxysterols and improve bile acids profile. The trial consisted of a three-period, three-treatment crossover study and the six different sequences of three treatments were randomized. Using a linear mixed effect regression model with a random intercept, we observed that atorvastatin decreased moderately plasma 27-OHC (∼30%, P < 0.001) but did not change 27-OHC to total cholesterol ratio or 25-OHC levels. We also found an abnormal bile acids profile in SPG5 patients, with significantly decreased total serum bile acids associated with a relative decrease of ursodeoxycholic and lithocholic acids compared to deoxycholic acid. Treatment with chenodeoxycholic acid restored bile acids profile in SPG5 patients. Therefore, the combination of atorvastatin and chenodeoxycholic acid may be worth considering for the treatment of SPG5 patients but the neurological benefit of these metabolic interventions remains to be evaluated in phase III therapeutic trials using clinical, imaging and/or electrophysiological outcome measures with sufficient effect sizes. Overall, our study indicates that plasma 25-OHC and 27-OHC are robust diagnostic biomarkers of SPG5 and shall be used as first-line investigations in any patient with unexplained spastic paraplegia.


Assuntos
Anticolesterolemiantes/uso terapêutico , Mutação/genética , Oxisteróis/sangue , Paraplegia Espástica Hereditária/sangue , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Atorvastatina/uso terapêutico , Ácidos e Sais Biliares/sangue , Criança , Colesterol/sangue , Estudos de Coortes , Família 7 do Citocromo P450/genética , Ácido Desoxicólico/uso terapêutico , Feminino , Humanos , Hidroxicolesteróis/sangue , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Exame Neurológico , Curva ROC , Resveratrol/uso terapêutico , Paraplegia Espástica Hereditária/diagnóstico por imagem , Esteroide Hidroxilases/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...