Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurol ; 270(6): 2817-2825, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37027019

RESUMO

BACKGROUND: The SARS-CoV-2 Omicron variant appears to cause milder infections, however, its capacity for immune evasion and high transmissibility despite vaccination remains a concern, particularly in immunosuppressed patients. Herein, we investigate the incidence and risk factors for COVID-19 infection in vaccinated adult patients with Multiple Sclerosis (MS), Aquaporin-4-antibody Neuromyelitis Optica Spectrum Disorder (AQP4-Ab NMOSD), and Myelin Oligodendrocyte Glycoprotein-antibody associated disease (MOGAD) during the Omicron subvariant BA.1/2 wave in Singapore. METHODS: This was a prospective observational study conducted at the National Neuroscience Institute, Singapore. Only patients who had at least two doses of mRNA vaccines were included. Data on demographics, disease characteristics, COVID-19 infections and vaccinations, and immunotherapies were collected. SARS-CoV-2 neutralising antibodies were measured at various time points after vaccination. RESULTS: Two hundred and one patients were included; 47 had COVID-19 infection during the study period. Multivariable logistic regression revealed that receipt of a third SARS-CoV-2 mRNA vaccination (V3) was protective against COVID-19 infection. No particular immunotherapy group increased the risk of infection, however, Cox proportional-hazards regression showed that patients on anti-CD20s and sphingosine-1-phosphate modulators (S1PRMs) had a shorter time to infection after V3, compared to those on other immunotherapies or not on immunotherapy. CONCLUSIONS: The Omicron subvariant BA.1/2 is highly infectious in patients with central nervous system inflammatory diseases; three doses of mRNA vaccination improved protection. However, treatment with anti-CD20s and S1PRMs predisposed patients to earlier infection. Future studies are required to determine the protective efficacy of newer bivalent vaccines that target the Omicron (sub)variant, especially in immunocompromised patients.


Assuntos
COVID-19 , Esclerose Múltipla , Neuromielite Óptica , Humanos , Singapura/epidemiologia , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Antivirais , Vacinação , Glicoproteína Mielina-Oligodendrócito
2.
Front Immunol ; 13: 985385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341446

RESUMO

MAIT cells are persistently depleted and functionally exhausted in HIV-1-infected patients despite long-term combination antiretroviral therapy (cART). IL-7 treatment supports MAIT cell reconstitution in vivo HIV-1-infected individuals and rescues their functionality in vitro. Single-nucleotide polymorphisms (SNPs) of the IL-7RA gene modulate the levels of soluble(s)IL-7Rα (sCD127) levels and influence bioavailability of circulating IL-7. Here we evaluate the potential influence of IL-7RA polymorphisms on MAIT cell numbers and function in healthy control (HC) subjects and HIV-1-infected individuals on long-term cART. Our findings indicate that IL-7RA haplotype 2 (H2*T), defined as T-allele carriers at the tagging SNP rs6897932, affects the size of the peripheral blood MAIT cell pool, as well as their production of cytokines and cytolytic effector proteins in response to bacterial stimulation. H2*T carriers had lower sIL-7Rα levels and higher MAIT cell frequency with enhanced functionality linked to higher expression of MAIT cell-associated transcription factors. Despite an average of 7 years on suppressive cART, MAIT cell levels and function in HIV-1-infected individuals were still significantly lower than those of HC. Notably, we observed a significant correlation between MAIT cell levels and cART duration only in HIV-1-infected individuals carrying IL-7RA haplotype 2. Interestingly, treatment with sIL-7Rα in vitro suppressed IL-7-dependent MAIT cell proliferation and function following cognate stimulations. These observations suggest that sIL-7Rα levels may influence MAIT cell numbers and function in vivo by limiting IL-7 bioavailability to MAIT cells. Collectively, these observations suggest that IL-7RA polymorphisms may play a significant role in MAIT cell biology and influence MAIT cells recovery in HIV-1 infection. The potential links between IL7RA polymorphisms, MAIT cell immunobiology, and HIV-1 infection warrant further studies going forward.


Assuntos
Infecções por HIV , HIV-1 , Células T Invariantes Associadas à Mucosa , Humanos , Polimorfismo de Nucleotídeo Único , Interleucina-7/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética
3.
Front Aging Neurosci ; 14: 957705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313019

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative diseases in which neuroinflammation plays pivotal roles. An important mechanism of neuroinflammation is the NLRP3 inflammasome activation that has been implicated in PD pathogenesis. In this perspective, we will discuss the relationship of some key PD-associated proteins including α-synuclein and Parkin and their contribution to inflammasome activation. We will also review promising inhibitors of NLRP3 inflammasome pathway that have potential as novel PD therapeutics. Finally, we will provide a summary of current and potential in vitro and in vivo models that are available for therapeutic discovery and development.

4.
Cells ; 11(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35626686

RESUMO

Parkinson's disease (PD) is a debilitating movement disorder characterised by the loss of dopaminergic neurons in the substantia nigra. As neuroprotective agents mitigating the rate of neurodegeneration are unavailable, the current therapies largely focus only on symptomatic relief. Here, we identified stress-inducible phosphoprotein 1 (STIP1) as a putative neuroprotective factor targeted by PD-specific autoantibodies. STIP1 is a co-chaperone with reported neuroprotective capacities in mouse Alzheimer's disease and stroke models. With human dopaminergic neurons derived from induced pluripotent stem cells, STIP1 was found to alleviate staurosporine-induced neurotoxicity. A case-control study involving 50 PD patients (average age = 62.94 ± 8.48, Hoehn and Yahr >2 = 55%) and 50 age-matched healthy controls (HCs) (average age = 63.1 ± 8) further revealed high levels of STIP1 autoantibodies in 20% of PD patients compared to 10% of HCs. Using an overlapping peptide library covering the STIP1 protein, we identified four PD-specific B cell epitopes that were not recognised in HCs. All of these epitopes were located within regions crucial for STIP1's chaperone function or prion protein association. Our clinical and neuro-immunological studies highlight the potential of the STIP1 co-chaperone as an endogenous neuroprotective agent in PD and suggest the possible involvement of autoimmune mechanisms via the production of autoantibodies in a subset of individuals.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Autoanticorpos , Estudos de Casos e Controles , Proteínas de Choque Térmico/uso terapêutico , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/metabolismo , Fosfoproteínas
5.
Front Neurol ; 11: 625446, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329375

RESUMO

[This corrects the article DOI: 10.3389/fneur.2020.00849.].

6.
iScience ; 23(12): 101876, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33344919

RESUMO

Bats are reservoirs for a large number of viruses which have potential to cause major human disease outbreaks, including the current coronavirus disease 2019 (COVID-19) pandemic. Major efforts are underway to understand bat immune response to viruses, whereas much less is known about their immune responses to bacteria. In this study, MR1-restricted T (MR1T) cells were detected through the use of MR1 tetramers in circulation and tissues of Pteropus alecto (Pa) bats. Pa MR1T cells exhibited weak responses to MR1-presented microbial metabolites at resting state. However, following priming with MR1-presented agonist they proliferated, upregulated critical transcription factors and cytolytic proteins, and gained transient expression of Th1/17-related cytokines and antibacterial cytotoxicity. Collectively, these findings show that the Pa bat immune system encompasses an abundant and functionally conserved population of MR1T cells with mucosal-associated invariant T-like characteristics, suggesting that MR1 and MR1T cells also play a significant role in bat immune defense.

7.
Front Neurol ; 11: 849, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982910

RESUMO

Increasing evidence suggests an association between gastrointestinal (GI) disorders and susceptibility and progress of Parkinson's disease (PD). Gut-brain axis has been proposed to play important roles in the pathogenesis of PD, though the exact pathophysiologic mechanism has yet to be elucidated. Here, we discuss the common factors involved in both PD and GI disorders, including genes, altered gut microbiota, diet, environmental toxins, and altered mucosal immunity. Large-scale prospective clinical studies are needed to define the exact relationship between dietary factors, microbiome, and genetic factors in PD. Identification of early diagnostic markers and demonstration of the efficacy of diet modulation and regulation of gut microbiome through specific therapeutics can potentially change the treatment paradigm for PD.

8.
PLoS Biol ; 18(6): e3000644, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511236

RESUMO

Mucosa-associated invariant T (MAIT) cells are abundant antimicrobial T cells in humans and recognize antigens derived from the microbial riboflavin biosynthetic pathway presented by the MHC-Ib-related protein (MR1). However, the mechanisms responsible for MAIT cell antimicrobial activity are not fully understood, and the efficacy of these mechanisms against antibiotic resistant bacteria has not been explored. Here, we show that MAIT cells mediate MR1-restricted antimicrobial activity against Escherichia coli clinical strains in a manner dependent on the activity of cytolytic proteins but independent of production of pro-inflammatory cytokines or induction of apoptosis in infected cells. The combined action of the pore-forming antimicrobial protein granulysin and the serine protease granzyme B released in response to T cell receptor (TCR)-mediated recognition of MR1-presented antigen is essential to mediate control against both cell-associated and free-living, extracellular forms of E. coli. Furthermore, MAIT cell-mediated bacterial control extends to multidrug-resistant E. coli primary clinical isolates additionally resistant to carbapenems, a class of last resort antibiotics. Notably, high levels of granulysin and granzyme B in the MAIT cell secretomes directly damage bacterial cells by increasing their permeability, rendering initially resistant E. coli susceptible to the bactericidal activity of carbapenems. These findings define the role of cytolytic effector proteins in MAIT cell-mediated antimicrobial activity and indicate that granulysin and granzyme B synergize to restore carbapenem bactericidal activity and overcome carbapenem resistance in E. coli.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Carbapenêmicos/farmacologia , Citotoxicidade Imunológica , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Granzimas/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Anti-Infecciosos/farmacologia , Carga Bacteriana/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Células HeLa , Humanos , Cinética
9.
Methods Mol Biol ; 2098: 149-165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31792821

RESUMO

The mucosa-associated invariant T (MAIT) cells represent the most abundant population of antimicrobial T cells in humans. When encountering cells infected with riboflavin-producing bacteria, this innate-like T cell population rapidly release a plethora of pro-inflammatory cytokines, mediates antimicrobial activity, and kill infected cells. Here, we describe methodological approaches and protocols to measure their cytotoxicity and antimicrobial effector function using multi-color flow cytometry-based and standard microbiological techniques. We provide specific guidance on protocols and describe potential pitfalls for each of the presented methodologies. Finally, we discuss potential applications and current limitations of our approaches to the study of human MAIT cell antimicrobial properties.


Assuntos
Citotoxicidade Imunológica , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Biomarcadores , Técnicas de Cocultura , Escherichia coli/imunologia , Citometria de Fluxo , Células HeLa , Humanos , Imunofenotipagem/métodos , Contagem de Linfócitos
10.
Proc Natl Acad Sci U S A ; 115(49): E11513-E11522, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30442667

RESUMO

Mucosa-associated invariant T (MAIT) cells are unconventional innate-like T cells that recognize microbial riboflavin metabolites presented by the MHC class I-like protein MR1. Human MAIT cells predominantly express the CD8α coreceptor (CD8+), with a smaller subset lacking both CD4 and CD8 (double-negative, DN). However, it is unclear if these two MAIT cell subpopulations distinguished by CD8α represent functionally distinct subsets. Here, we show that the two MAIT cell subsets express divergent transcriptional programs and distinct patterns of classic T cell transcription factors. Furthermore, CD8+ MAIT cells have higher levels of receptors for IL-12 and IL-18, as well as of the activating receptors CD2, CD9, and NKG2D, and display superior functionality following stimulation with riboflavin-autotrophic as well as riboflavin-auxotrophic bacterial strains. DN MAIT cells display higher RORγt/T-bet ratio, and express less IFN-γ and more IL-17. Furthermore, the DN subset displays enrichment of an apoptosis gene signature and higher propensity for activation-induced apoptosis. During development in human fetal tissues, DN MAIT cells are more mature and accumulate over gestational time with reciprocal contraction of the CD8+ subset. Analysis of the T cell receptor repertoire reveals higher diversity in CD8+ MAIT cells than in DN MAIT cells. Finally, chronic T cell receptor stimulation of CD8+ MAIT cells in an in vitro culture system supports the accumulation and maintenance of the DN subpopulation. These findings define human CD8+ and DN MAIT cells as functionally distinct subsets and indicate a derivative developmental relationship.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Subpopulações de Linfócitos T/fisiologia , Feminino , Feto , Regulação da Expressão Gênica , Humanos , Masculino , Técnicas de Amplificação de Ácido Nucleico , Gravidez , RNA/genética , RNA/metabolismo , Útero/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...