Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 22(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33286020

RESUMO

Quantum history states were recently formulated by extending the consistent histories approach of Griffiths to the entangled superposition of evolution paths and were then experimented with Greenberger-Horne-Zeilinger states. Tensor product structure of history-dependent correlations was also recently exploited as a quantum computing resource in simple linear optical setups performing multiplane diffraction (MPD) of fermionic and bosonic particles with remarkable promises. This significantly motivates the definition of quantum histories of MPD as entanglement resources with the inherent capability of generating an exponentially increasing number of Feynman paths through diffraction planes in a scalable manner and experimental low complexity combining the utilization of coherent light sources and photon-counting detection. In this article, quantum temporal correlation and interference among MPD paths are denoted with quantum path entanglement (QPE) and interference (QPI), respectively, as novel quantum resources. Operator theory modeling of QPE and counterintuitive properties of QPI are presented by combining history-based formulations with Feynman's path integral approach. Leggett-Garg inequality as temporal analog of Bell's inequality is violated for MPD with all signaling constraints in the ambiguous form recently formulated by Emary. The proposed theory for MPD-based histories is highly promising for exploiting QPE and QPI as important resources for quantum computation and communications in future architectures.

2.
Sci Rep ; 10(1): 10968, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620792

RESUMO

The scalability, error correction and practical problem solving are important challenges for quantum computing (QC) as more emphasized by quantum supremacy (QS) experiments. Quantum path computing (QPC), recently introduced for linear optic based QCs as an unconventional design, targets to obtain scalability and practical problem solving. It samples the intensity from the interference of exponentially increasing number of propagation paths obtained in multi-plane diffraction (MPD) of classical particle sources. QPC exploits MPD based quantum temporal correlations of the paths and freely entangled projections at different time instants, for the first time, with the classical light source and intensity measurement while not requiring photon interactions or single photon sources and receivers. In this article, photonic QPC is defined, theoretically modeled and numerically analyzed for arbitrary Fourier optical or quadratic phase set-ups while utilizing both Gaussian and Hermite-Gaussian source laser modes. Problem solving capabilities already including partial sum of Riemann theta functions are extended. Important future applications, implementation challenges and open issues such as universal computation and quantum circuit implementations determining the scope of QC capabilities are discussed. The applications include QS experiments reaching more than [Formula: see text] Feynman paths, quantum neuron implementations and solutions of nonlinear Schrödinger equation.

3.
Micromachines (Basel) ; 11(1)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963724

RESUMO

We demonstrate freely suspended graphene-based nanomechanical membranes (NMMs) as acoustic sensors in the audible frequency range. Simple and low-cost procedures are used to fabricate NMMs with various thicknesses based on graphene layers grown by graphite exfoliation and solution processed graphene oxide. In addition, NMMs are grafted with quantum dots (QDs) for characterizing mass sensitive vibrational properties. Thickness, roughness, deformation, deflection and emissions of NMMs with attached QDs are experimented and analyzed by utilizing atomic force microscopy, Raman spectroscopy, laser induced deflection analyzer and spectrophotometers. Förster resonance energy transfer (FRET) is experimentally achieved between the QDs attached on NMMs and nearby glass surfaces for illustrating acousto-optic utilization in future experimental implementations combining vibrational properties of NMMs with optical emission properties of QDs. This property denoted as vibrating FRET (VFRET) is previously introduced in theoretical studies while important experimental steps are for the first time achieved in this study for future VFRET implementations. The proposed modeling and experimental methodology are promising for future novel applications such as NMM based biosensing, photonics and VFRET based point-of-care (PoC) devices.

4.
Micromachines (Basel) ; 10(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577634

RESUMO

Förster resonance energy transfer (FRET) between two molecules in nanoscale distances is utilized in significant number of applications including biological and chemical applications, monitoring cellular activities, sensors, wireless communications and recently in nanoscale microfluidic radar design denoted by the vibrating FRET (VFRET) exploiting hybrid resonating graphene membrane and FRET design. In this article, a low hardware complexity and novel microfluidic viscosity monitoring system architecture is presented by exploiting VFRET in a novel microfluidic system design. The donor molecules in a microfluidic channel are acoustically vibrated resulting in VFRET in the case of nearby acceptor molecules detected with their periodic optical emission signals. VFRET does not require complicated hardware by directly utilizing molecular interactions detected with the conventional photodetectors. The proposed viscosity measurement system design is theoretically modeled and numerically simulated while the experimental challenges are discussed. It promises point-of-care and environmental monitoring applications including viscosity characterization of blood or polluted water.

5.
IEEE Trans Nanobioscience ; 16(8): 905-916, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29364134

RESUMO

Biological particle tracking systems monitor cellular processes or particle behaviors with the great accuracy. The emissions of fluorescent molecules or direct images of particles are captured with cameras or photodetectors. The current imaging systems have challenges in detection, collection, and analysis of imaging data, penetration depth, and complicated set-ups. In this paper, a signaling-based nanoscale acousto-optic radar and microfluidic multiple particle tracking (MPT) system is proposed based on the theoretical design providing nanoscale optical modulator with vibrating Förster resonance energy transfer and vibrating cadmium selenide/zinc sulfide quantum dots (QDs) on graphene resonators. The modulator combines significant advantages of graphene membranes having wideband resonance frequencies with QDs having broad absorption spectrum and tunable properties. The solution denoted by chirp spread spectrum(CSS) Tag utilizes classical radar target tracking approaches in nanoscale environments based on the capability to generate CSS sequences identifying different bio-particles. Monte Carlo simulations show significant performance for MPT with a modulator of dimension and several picograms of weight, the signal-to-noise ratio in the range from -7 to 10 dB, simple light emitting diode sources with power less than 4 W/cm2 and high speed tracking for microfluidic environments.


Assuntos
Rastreamento de Células/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Grafite/química , Técnicas Analíticas Microfluídicas/métodos , Imagem Óptica/métodos , Compostos de Cádmio/química , Simulação por Computador , Humanos , Nanotecnologia , Pontos Quânticos/química , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...