Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Viruses ; 16(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675888

RESUMO

The pandemic caused by SARS-CoV-2 is still a major health problem. Newly emerging variants and long-COVID-19 represent a challenge for the global health system. In particular, individuals in developing countries with insufficient health care need easily accessible, affordable and effective treatments of COVID-19. Previous studies have demonstrated the efficacy of functional inhibitors of acid sphingomyelinase against infections with various viruses, including early variants of SARS-CoV-2. This work investigated whether the acid sphingomyelinase inhibitors fluoxetine and sertraline, usually used as antidepressant molecules in clinical practice, can inhibit the replication of the former and recently emerged SARS-CoV-2 variants in vitro. Fluoxetine and sertraline potently inhibited the infection with pseudotyped virus-like particles and SARS-CoV-2 variants D614G, alpha, delta, omicron BA.1 and omicron BA.5. These results highlight fluoxetine and sertraline as priority candidates for large-scale phase 3 clinical trials at different stages of SARS-CoV-2 infections, either alone or in combination with other medications.


Assuntos
Antivirais , COVID-19 , Fluoxetina , SARS-CoV-2 , Sertralina , Replicação Viral , SARS-CoV-2/efeitos dos fármacos , Sertralina/farmacologia , Fluoxetina/farmacologia , Replicação Viral/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Chlorocebus aethiops , Células Vero , COVID-19/virologia , Animais , Tratamento Farmacológico da COVID-19
2.
Pflugers Arch ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592461
3.
Tuberculosis (Edinb) ; 147: 102493, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38547568

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the deadliest infections in humans. Because Mycobacterium bovis Bacillus Calmette-Guérin (BCG) share genetic similarities with Mycobacterium tuberculosis, it is often used as a model to elucidate the molecular mechanisms of more severe tuberculosis infection. Caveolin-1 has been implied in many physiological processes and diseases, but it's role in mycobacterial infections has barely been studied. We isolated macrophages from Wildtype or Caveolin-1 deficient mice and analyzed hallmarks of infection, such as internalization, induction of autophagy and apoptosis. For in vivo assays we intravenously injected mice with BCG and investigated tissues for bacterial load with colony-forming unit assays, bioactive lipids with mass spectrometry and changes of protein expressions by Western blotting. Our results revealed that Caveolin-1 was important for early killing of BCG infection in vivo and in vitro, controlled acid sphingomyelinase (Asm)-dependent ceramide formation, apoptosis and inflammatory cytokines upon infection with BCG. In accordance, Caveolin-1 deficient mice and macrophages showed higher bacterial burdens in the livers. The findings indicate that Caveolin-1 plays a role in infection of mice and murine macrophages with BCG, by controlling cellular apoptosis and inflammatory host response. These clues might be useful in the fight against tuberculosis.

4.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473734

RESUMO

Rhinoviral infections cause approximately 50% of upper respiratory tract infections and novel treatment options are urgently required. We tested the effects of 10 µM to 20 µM sphingosine on the infection of cultured and freshly isolated human cells with minor and major group rhinovirus in vitro. We also performed in vivo studies on mice that were treated with an intranasal application of 10 µL of either a 10 µM or a 100 µM sphingosine prior and after infection with rhinovirus strains 1 and 2 and determined the infection of nasal epithelial cells in the presence or absence of sphingosine. Finally, we determined and characterized a direct binding of sphingosine to rhinovirus. Our data show that treating freshly isolated human nasal epithelial cells with sphingosine prevents infections with rhinovirus strains 2 (minor group) and 14 (major group). Nasal infection of mice with rhinovirus 1b and 2 is prevented by the intranasal application of sphingosine before or as long as 8 h after infection with rhinovirus. Nasal application of the same doses of sphingosine exerts no adverse effects on epithelial cells as determined by hemalaun and TUNEL stainings. The solvent, octylglucopyranoside, was without any effect in vitro and in vivo. Mechanistically, we demonstrate that the positively charged lipid sphingosine binds to negatively charged molecules in the virus, which seems to prevent the infection of epithelial cells. These findings indicate that exogenous sphingosine prevents infections with rhinoviruses, a finding that could be therapeutically exploited. In addition, we demonstrated that sphingosine has no obvious adverse effects on the nasal mucosa. Sphingosine prevents rhinoviral infections by a biophysical mode of action, suggesting that sphingosine could serve to prevent many viral infections of airways and epithelial cells in general. Future studies need to determine the molecular mechanisms of how sphingosine prevents rhinoviral infections and whether sphingosine also prevents infections with other viruses inducing respiratory tract infections. Furthermore, our studies do not provide detailed pharmacokinetics that are definitely required before the further development of sphingosine.


Assuntos
Infecções por Enterovirus , Infecções Respiratórias , Humanos , Animais , Camundongos , Esfingosina , Mucosa Nasal , Células Epiteliais , Rhinovirus
5.
J Heart Lung Transplant ; 43(1): 100-110, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673383

RESUMO

BACKGROUND: Ex vivo lung perfusion (EVLP) has expanded the donor pool for lung transplantation. Pulmonary Staphylococcus aureus infection, especially that caused by multidrug-resistant strains, is a severe threat to posttransplantation outcomes. Sphingosine is a lipid compound that exhibits broad-spectrum antibacterial activity. Therefore, we aimed to evaluate the effects of S aureus infection on EVLP and whether sphingosine administration during EVLP prevents infection with S aureus. METHODS: Eighteen pigs were randomly assigned to 3 groups: uninfected, infected with S aureus with NaCl treatment, or infected with sphingosine treatment. Bacterial numbers were determined before and after treatment. Sphingosine concentrations in the lung tissues were determined using biochemical assays. Lung histology, lung physiological parameters, perfusate content, lung weight, and cell death were measured to analyze the effects of infection and sphingosine administration on EVLP. RESULTS: Sphingosine administration significantly reduced the bacterial load. The concentration of sphingosine in the bronchial epithelium was elevated after sphingosine administration. S aureus infection increased pulmonary artery pressure and pulmonary vascular resistance. Lung edema, histology scores, lactate and lactate dehydrogenase levels in the perfusate, ΔPO2 in the perfusate, static lung compliance, and lung peak airway pressure did not differ among the groups. CONCLUSIONS: Infection of S aureus did not affect the lung function during EVLP but induced higher pulmonary artery pressure and pulmonary vascular resistance. Administration of sphingosine effectively eliminated S aureus without side effects in isolated, perfused, and ventilated pig lungs.


Assuntos
Transplante de Pulmão , Esfingosina , Suínos , Animais , Esfingosina/farmacologia , Staphylococcus aureus , Perfusão , Pulmão , Circulação Extracorpórea
6.
Handb Exp Pharmacol ; 284: 289-312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37922034

RESUMO

Sphingolipids are crucial molecules in the respiratory airways. As in most other tissues and organs, in the lung sphingolipids play an essential role as structural constituents as they regulate barrier function and fluidity of cell membranes. A lung-specific feature is the occurrence of sphingolipids as minor structural components in the surfactant. However, sphingolipids are also key signaling molecules involved in airway cell signaling and their dynamical formation and metabolism are important for normal lung physiology. Dysregulation of sphingolipid metabolism and signaling is involved in altering lung tissue and initiates inflammatory processes promoting the pathogenesis of pulmonal diseases including cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and asthma.In the present review, the important role of specific sphingolipid species in pulmonal diseases will be discussed. Only such an understanding opens up the possibility of developing new therapeutic strategies with the aim of correcting the imbalance in sphingolipid metabolism and signaling. Such delivery strategies have already been studied in animal models of these lung diseases, demonstrating that targeting the sphingolipid profile represents new therapeutic opportunities for lung disorders.


Assuntos
Fibrose Cística , Doença Pulmonar Obstrutiva Crônica , Animais , Esfingolipídeos , Pulmão , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fibrose Cística/tratamento farmacológico , Transdução de Sinais , Ceramidas , Esfingosina
7.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834072

RESUMO

Major depressive disorder (MDD) has a lifetime prevalence of approximately 10% and is one of the most common diseases worldwide. Although many pathogenetic mechanisms of MDD have been proposed, molecular details and a unifying hypothesis of the pathogenesis of MDD remain to be defined. Here, we investigated whether tyrosine nitrosylation, which is caused by reaction of the C-atom 3 of the tyrosine phenol ring with peroxynitrate (ONOO-), plays a role in experimental MDD, because tyrosine nitrosylation may affect many cell functions altered in MDD. To this end, we induced stress through glucocorticoid application or chronic environmental unpredictable stress and determined tyrosine nitrosylation in the hippocampus through immuno-staining and ELISA. The role of catalases and peroxidases for tyrosine nitrosylation was measured using enzyme assays. We show that glucocorticoid- and chronic unpredictable environmental stress induced tyrosine nitrosylation in the hippocampus. Long-term treatment of stressed mice with the classical antidepressants amitriptyline or fluoxetine prevented tyrosine nitrosylation. Tyrosine nitrosylation was also prevented through i.v. application of anti-ceramide antibodies or recombinant ceramidase to neutralize or degrade, respectively, blood plasma ceramide that has been recently shown to induce experimental MDD. Finally, the application of phosphatidic acid, previously shown to be reduced in the hippocampus upon stress, also reverted stress-induced tyrosine nitrosylation. The inhibition of tyrosine nitrosylation by interfering with the formation of NO radicals at least partly restored normal behavior in stressed mice. These data suggest that tyrosine nitrosylation might contribute to the pathogenesis of MDD and targeting this process might contribute to the treatment of MDD.


Assuntos
Transtorno Depressivo Maior , Animais , Camundongos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/etiologia , Transtorno Depressivo Maior/metabolismo , Glucocorticoides/metabolismo , Tirosina/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Hipocampo/metabolismo
8.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37762308

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disorder caused by the deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) and often leads to pulmonary infections caused by various pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and nontuberculous mycobacteria, particularly Mycobacterium abscessus. Unfortunately, M. abscessus infections are increasing in prevalence and are associated with the rapid deterioration of CF patients. The treatment options for M. abscessus infections are limited, requiring the urgent need to comprehend infectious pathogenesis and develop new therapeutic interventions targeting affected CF patients. Here, we show that the deficiency of CFTR reduces sphingosine levels in bronchial and alveolar epithelial cells and macrophages from CF mice and humans. Decreased sphingosine contributes to the susceptibility of CF tissues to M. abscessus infection, resulting in a higher incidence of infections in CF mice. Notably, treatment of M. abscessus with sphingosine demonstrated potent bactericidal activity against the pathogen. Most importantly, restoration of sphingosine levels in CF cells, whether human or mouse, and in the lungs of CF mice, provided protection against M. abscessus infections. Our findings demonstrate that pulmonary sphingosine levels are important in controlling M. abscessus infection. These results offer a promising therapeutic avenue for CF patients with pulmonary M. abscessus infections.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Humanos , Animais , Camundongos , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Esfingosina , Infecções por Mycobacterium não Tuberculosas/complicações , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Micobactérias não Tuberculosas
9.
Front Cell Infect Microbiol ; 13: 1234420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577372

RESUMO

Pseudomonas aeruginosa TBCF10839 is a highly virulent strain that can persist and replicate in human neutrophils. Screening of a signature-tagged mutagenesis (STM) TBCF10839 transposon library in phagocytosis tests identified a mutant that carried the transposon in the VirB4 homolog 5PG21 of an integrative and conjugative element (ICE)-associated type IV secretion system of the pKLC102 subtype. 5P21 TBCF10839 insertion mutants were deficient in metabolic versatility, secretion, quorum sensing, and virulence. The mutants were efficiently killed in phagocytosis tests in vitro and were avirulent in an acute murine airway infection model in vivo. The inactivation of 5PG21 silenced the rhl, las, and pqs operons and the gene expression for the synthesis of hydrogen cyanide, the antimetabolite l-2-amino-4-methoxy-trans-3-butenoic acid, and the H2- and H3-type VI secretion systems and their associated effectors. The mutants were impaired in the utilization of carbon sources and stored compounds that are not funneled into intermediary metabolism. This showcase demonstrates that a single gene of the mobile accessory genome can become an essential element to operate the core genome-encoded features of metabolism and virulence.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Camundongos , Humanos , Virulência/genética , Pseudomonas aeruginosa/metabolismo , Adenosina Trifosfatases , Mutagênese , Elementos de DNA Transponíveis , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções por Pseudomonas/genética
10.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37631022

RESUMO

Prior evidence indicates the potential central role of the acid sphingomyelinase (ASM)/ceramide system in the infection of cells with SARS-CoV-2. We conducted a multicenter retrospective observational study including 72,105 adult patients with laboratory-confirmed SARS-CoV-2 infection who were admitted to 36 AP-HP (Assistance Publique-Hôpitaux de Paris) hospitals from 2 May 2020 to 31 August 2022. We examined the association between the ongoing use of medications functionally inhibiting acid sphingomyelinase (FIASMA), which reduces the infection of cells with SARS-CoV-2 in vitro, upon hospital admission with 28-day all-cause mortality in a 1:1 ratio matched analytic sample based on clinical characteristics, disease severity and other medications (N = 9714). The univariate Cox regression model of the matched analytic sample showed that FIASMA medication use at admission was associated with significantly lower risks of 28-day mortality (HR = 0.80; 95% CI = 0.72-0.88; p < 0.001). In this multicenter observational study, the use of FIASMA medications was significantly and substantially associated with reduced 28-day mortality among adult patients hospitalized with COVID-19. These findings support the continuation of these medications during the treatment of SARS-CoV-2 infections. Randomized clinical trials (RCTs) are needed to confirm these results, starting with the molecules with the greatest effect size in the study, e.g., fluoxetine, escitalopram, and amlodipine.

11.
J Mol Med (Berl) ; 101(7): 891-903, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246980

RESUMO

Pancreatic adenocarcinoma (PDAC) is one of the most common cancers worldwide. Unfortunately, the prognosis of PDAC is rather poor, and for instance, in the USA, over 47,000 people die because of pancreatic cancer annually. Here, we demonstrate that high expression of acid sphingomyelinase in PDAC strongly correlates with long-term survival of patients, as revealed by the analysis of two independent data sources. The positive effects of acid sphingomyelinase expression on long-term survival of PDAC patients were independent of patient demographics as well as tumor grade, lymph node involvement, perineural invasion, tumor stage, lymphovascular invasion, and adjuvant therapy. We also demonstrate that genetic deficiency or pharmacological inhibition of the acid sphingomyelinase promotes tumor growth in an orthotopic mouse model of PDAC. This is mirrored by a poorer pathologic response, as defined by the College of American Pathologists (CAP) score for pancreatic cancer, to neoadjuvant therapy of patients co-treated with functional inhibitors of the acid sphingomyelinase, in particular tricyclic antidepressants and selective serotonin reuptake inhibitors, in a retrospective analysis. Our data indicate expression of the acid sphingomyelinase in PDAC as a prognostic marker for tumor progression. They further suggest that the use of functional inhibitors of the acid sphingomyelinase, at least of tricyclic antidepressants and selective serotonin reuptake inhibitors in patients with PDAC, is contra-indicated. Finally, our data also suggest a potential novel treatment of PDAC patients with recombinant acid sphingomyelinase. KEY MESSAGES: Pancreatic ductal adenocarcinoma (PDAC) is a common tumor with poor prognosis. Expression of acid sphingomyelinase (ASM) determines outcome of PDAC. Genetic deficiency or pharmacologic inhibition of ASM promotes tumor growth in a mouse model. Inhibition of ASM during neoadjuvant treatment for PDAC correlates with worse pathology. ASM expression is a prognostic marker and potential target in PDAC.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Antidepressivos Tricíclicos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Estudos Retrospectivos , Inibidores Seletivos de Recaptação de Serotonina , Esfingomielina Fosfodiesterase/genética , Humanos , Neoplasias Pancreáticas
12.
Front Endocrinol (Lausanne) ; 14: 1170884, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082124

RESUMO

Graves' disease (GD) is caused by an autoimmune formation of autoantibodies and autoreactive T-cells against the thyroid stimulating hormone receptor (TSHR). The autoimmune reaction does not only lead to overstimulation of the thyroid gland, but very often also to an immune reaction against antigens within the orbital tissue leading to thyroid eye disease, which is characterized by activation of orbital fibroblasts, orbital generation of adipocytes and myofibroblasts and increased hyaluronan production in the orbit. Thyroid eye disease is the most common extra-thyroidal manifestation of the autoimmune Graves' disease. Several studies indicate an important role of sphingolipids, in particular the acid sphingomyelinase/ceramide system and sphingosine 1-phosphate in thyroid eye disease. Here, we discuss how the biophysical properties of sphingolipids contribute to cell signaling, in particular in the context of thyroid eye disease. We further review the role of the acid sphingomyelinase/ceramide system in autoimmune diseases and its function in T lymphocytes to provide some novel hypotheses for the pathogenesis of thyroid eye disease and potentially allowing the development of novel treatments.


Assuntos
Doenças Autoimunes , Doença de Graves , Oftalmopatia de Graves , Humanos , Esfingomielina Fosfodiesterase , Esfingolipídeos , Ceramidas
13.
Nat Commun ; 14(1): 1631, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36959217

RESUMO

Acid sphingomyelinase (ASM) has been implicated in neurodegenerative disease pathology, including Alzheimer's disease (AD). However, the specific role of plasma ASM in promoting these pathologies is poorly understood. Herein, we explore plasma ASM as a circulating factor that accelerates neuropathological features in AD by exposing young APP/PS1 mice to the blood of mice overexpressing ASM, through parabiotic surgery. Elevated plasma ASM was found to enhance several neuropathological features in the young APP/PS1 mice by mediating the differentiation of blood-derived, pathogenic Th17 cells. Antibody-based immunotherapy targeting plasma ASM showed efficient inhibition of ASM activity in the blood of APP/PS1 mice and, interestingly, led to prophylactic effects on neuropathological features by suppressing pathogenic Th17 cells. Our data reveals insights into the potential pathogenic mechanisms underlying AD and highlights ASM-targeting immunotherapy as a potential strategy for further investigation.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Camundongos Transgênicos , Esfingomielina Fosfodiesterase/genética , Modelos Animais de Doenças , Imunoterapia , Precursor de Proteína beta-Amiloide
14.
J Mol Med (Berl) ; 101(3): 295-310, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36790532

RESUMO

Pancreas ductal adenocarcinoma (PDAC) remains a malignant tumor with very poor prognosis and low 5-year overall survival. Here, we aimed to simultaneously target mitochondria and lysosomes as a new treatment paradigm of malignant pancreas cancer in vitro and in vivo. We demonstrate that the clinically used sphingosine analog FTY-720 together with PAPTP, an inhibitor of mitochondrial Kv1.3, induce death of pancreas cancer cells in vitro and in vivo. The combination of both drugs results in a marked inhibition of the acid sphingomyelinase and accumulation of cellular sphingomyelin in vitro and in vivo in orthotopic and flank pancreas cancers. Mechanistically, PAPTP and FTY-720 cause a disruption of both mitochondria and lysosomes, an alteration of mitochondrial bioenergetics and accumulation of cytoplasmic Ca2+, events that collectively mediate cell death. Our findings point to an unexpected cross-talk between lysosomes and mitochondria mediated by sphingolipid metabolism. We show that the combination of PAPTP and FTY-720 induces massive death of pancreas cancer cells, thereby leading to a substantially delayed and reduced PDAC growth in vivo. KEY MESSAGES: FTY-720 inhibits acid sphingomyelinase in pancreas cancer cells (PDAC). FTY-720 induces sphingomyelin accumulation and lysosomal dysfunction. The mitochondrial Kv1.3 inhibitor PAPTP disrupts mitochondrial functions. PAPTP and FTY-720 synergistically kill PDAC in vitro. The combination of FTY-720 and PAPTP greatly delays PDAC growth in vivo.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Esfingomielina Fosfodiesterase , Esfingomielinas/metabolismo , Cloridrato de Fingolimode , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas
15.
Biol Psychiatry Glob Open Sci ; 3(1): 56-67, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35013734

RESUMO

Background: Prior research suggests that psychiatric disorders could be linked to increased mortality among patients with COVID-19. However, whether all or specific psychiatric disorders are intrinsic risk factors of death in COVID-19 or whether these associations reflect the greater prevalence of medical risk factors in people with psychiatric disorders has yet to be evaluated. Methods: We performed an observational, multicenter, retrospective cohort study to examine the association between psychiatric disorders and mortality among patients hospitalized for laboratory-confirmed COVID-19 at 36 Greater Paris University hospitals. Results: Of 15,168 adult patients, 857 (5.7%) had an ICD-10 diagnosis of psychiatric disorder. Over a mean follow-up period of 14.6 days (SD = 17.9), 326 of 857 (38.0%) patients with a diagnosis of psychiatric disorder died compared with 1276 of 14,311 (8.9%) patients without such a diagnosis (odds ratio 6.27, 95% CI 5.40-7.28, p < .01). When adjusting for age, sex, hospital, current smoking status, and medications according to compassionate use or as part of a clinical trial, this association remained significant (adjusted odds ratio 3.27, 95% CI 2.78-3.85, p < .01). However, additional adjustments for obesity and number of medical conditions resulted in a nonsignificant association (adjusted odds ratio 1.02, 95% CI 0.84-1.23, p = .86). Exploratory analyses after the same adjustments suggested that a diagnosis of mood disorders was significantly associated with reduced mortality, which might be explained by the use of antidepressants. Conclusions: These findings suggest that the increased risk of COVID-19-related mortality in individuals with psychiatric disorders hospitalized for COVID-19 might be explained by the greater number of medical conditions and the higher prevalence of obesity in this population and not by the underlying psychiatric disease.

16.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555152

RESUMO

This study investigated whether sphingosine is effective as prophylaxis against Aspergillus spp. and Candida spp. In vitro experiments showed that sphingosine is very efficacious against A. fumigatus and Nakeomyces glabrataa (formerly named C. glabrata). A mouse model of invasive aspergillosis showed that sphingosine exerts a prophylactic effect and that sphingosine-treated animals exhibit a strong survival advantage after infection. Furthermore, mechanistic studies showed that treatment with sphingosine leads to the early depolarization of the mitochondrial membrane potential (Δψm) and the generation of mitochondrial reactive oxygen species and to a release of cytochrome C within minutes, thereby presumably initiating apoptosis. Because of its very good tolerability and ease of application, inhaled sphingosine should be further developed as a possible prophylactic agent against pulmonary aspergillosis among severely immunocompromised patients.


Assuntos
Antifúngicos , Candida , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Esfingosina/farmacologia , Testes de Sensibilidade Microbiana , Aspergillus
17.
Cell Death Dis ; 13(12): 1055, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539400

RESUMO

Ion channels are non-conventional, druggable oncological targets. The intermediate-conductance calcium-dependent potassium channel (KCa3.1) is highly expressed in the plasma membrane and in the inner mitochondrial membrane (mitoKCa3.1) of various cancer cell lines. The role mitoKCa3.1 plays in cancer cells is still undefined. Here we report the synthesis and characterization of two mitochondria-targeted novel derivatives of a high-affinity KCa3.1 antagonist, TRAM-34, which retain the ability to block channel activity. The effects of these drugs were tested in melanoma, pancreatic ductal adenocarcinoma and breast cancer lines, as well as in vivo in two orthotopic models. We show that the mitochondria-targeted TRAM-34 derivatives induce release of mitochondrial reactive oxygen species, rapid depolarization of the mitochondrial membrane, fragmentation of the mitochondrial network. They trigger cancer cell death with an EC50 in the µM range, depending on channel expression. In contrast, inhibition of the plasma membrane KCa3.1 by membrane-impermeant Maurotoxin is without effect, indicating a specific role of mitoKCa3.1 in determining cell fate. At sub-lethal concentrations, pharmacological targeting of mitoKCa3.1 significantly reduced cancer cell migration by enhancing production of mitochondrial reactive oxygen species and nuclear factor-κB (NF-κB) activation, and by downregulating expression of Bcl-2 Nineteen kD-Interacting Protein (BNIP-3) and of Rho GTPase CDC-42. This signaling cascade finally leads to cytoskeletal reorganization and impaired migration. Overexpression of BNIP-3 or pharmacological modulation of NF-κB and CDC-42 prevented the migration-reducing effect of mitoTRAM-34. In orthotopic models of melanoma and pancreatic ductal adenocarcinoma, the tumors at sacrifice were 60% smaller in treated versus untreated animals. Metastasis of melanoma cells to lymph nodes was also drastically reduced. No signs of toxicity were observed. In summary, our results identify mitochondrial KCa3.1 as an unexpected player in cancer cell migration and show that its pharmacological targeting is efficient against both tumor growth and metastatic spread in vivo.


Assuntos
Carcinoma Ductal Pancreático , Melanoma , Neoplasias Pancreáticas , Canais de Potássio Cálcio-Ativados , Animais , NF-kappa B/metabolismo , Cálcio/metabolismo , Canais de Cálcio , Canais de Potássio , Espécies Reativas de Oxigênio/metabolismo , Morte Celular , Mitocôndrias/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Neoplasias Pancreáticas
18.
Elife ; 112022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36426850

RESUMO

Acid sphingomyelinase (Asm) and acid ceramidase (Ac) are parts of the sphingolipid metabolism. Asm hydrolyzes sphingomyelin to ceramide, which is further metabolized to sphingosine by Ac. Ceramide generates ceramide-enriched platforms that are involved in receptor clustering within cellular membranes. However, the impact of cell-intrinsic ceramide on T cell function is not well characterized. By using T cell-specific Asm- or Ac-deficient mice, with reduced or elevated ceramide levels in T cells, we identified ceramide to play a crucial role in T cell function in vitro and in vivo. T cell-specific ablation of Asm in Smpd1fl/fl/Cd4cre/+ (Asm/CD4cre) mice resulted in enhanced tumor progression associated with impaired T cell responses, whereas Asah1fl/fl/Cd4cre/+ (Ac/CD4cre) mice showed reduced tumor growth rates and elevated T cell activation compared to the respective controls upon tumor transplantation. Further in vitro analysis revealed that decreased ceramide content supports CD4+ regulatory T cell differentiation and interferes with cytotoxic activity of CD8+ T cells. In contrast, elevated ceramide concentration in CD8+ T cells from Ac/CD4cre mice was associated with enhanced cytotoxic activity. Strikingly, ceramide co-localized with the T cell receptor (TCR) and CD3 in the membrane of stimulated T cells and phosphorylation of TCR signaling molecules was elevated in Ac-deficient T cells. Hence, our results indicate that modulation of ceramide levels, by interfering with the Asm or Ac activity has an effect on T cell differentiation and function and might therefore represent a novel therapeutic strategy for the treatment of T cell-dependent diseases such as tumorigenesis.


Assuntos
Ceramidas , Melanoma , Animais , Camundongos , Ceramidas/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Esfingosina/metabolismo , Receptores de Antígenos de Linfócitos T
19.
Cells ; 11(22)2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36429053

RESUMO

Diabetes and inflammatory diseases are associated with an altered cellular lipid composition due to lipid peroxidation. The pathogenic potential of these lipid alterations in glomerular kidney diseases remains largely obscure as suitable cell culture and animal models are lacking. In glomerular disease, a loss of terminally differentiated glomerular epithelial cells called podocytes refers to irreversible damage. Podocytes are characterized by a complex ramified cellular architecture and highly active transmembrane signaling. Alterations in lipid composition in states of disease have been described in podocytes but the pathophysiologic mechanisms mediating podocyte damage are unclear. In this study, we employ a genetic deletion of the anti-oxidative, lipid-modifying paraoxonase 2 enzyme (PON2) as a model to study altered cellular lipid composition and its effects on cellular signaling in glomerular disease. PON2 deficiency reproduces features of an altered lipid composition of glomerular disease, characterized by an increase in ceramides and cholesterol. PON2 knockout mice are more susceptible to glomerular damage in models of aggravated oxidative stress such as adriamycin-induced nephropathy. Voltage clamp experiments in cultured podocytes reveal a largely increased TRPC6 conductance after a membrane stretch in PON2 deficiency. Correspondingly, a concomitant knockout of TRPC6 and PON2 partially rescues the aggravated glomerular phenotype of a PON2 knockout in the adriamycin model. This study establishes PON2 deficiency as a model to investigate the pathophysiologic mechanisms of podocyte dysfunction related to alterations in the lipid composition, as seen in diabetic and inflammatory glomerular disease. Expanding the knowledge on these routes and options of intervention could lead to novel treatment strategies for glomerular disease.


Assuntos
Diabetes Mellitus , Nefropatias , Camundongos , Animais , Canal de Cátion TRPC6 , Arildialquilfosfatase/genética , Camundongos Knockout , Doxorrubicina , Lipídeos
20.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362409

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic continues to cause significant morbidity and mortality worldwide. Since a large portion of the world's population is currently unvaccinated or incompletely vaccinated and has limited access to approved treatments against COVID-19, there is an urgent need to continue research on treatment options, especially those at low cost and which are immediately available to patients, particularly in low- and middle-income countries. Prior in vitro and observational studies have shown that fluoxetine, possibly through its inhibitory effect on the acid sphingomyelinase/ceramide system, could be a promising antiviral and anti-inflammatory treatment against COVID-19. In this report, we evaluated the potential antiviral and anti-inflammatory activities of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and against variants of concern in vitro, i.e., SARS-CoV-2 ancestral strain, Alpha B.1.1.7, Gamma P1, Delta B1.617 and Omicron BA.5. Fluoxetine, administrated after SARS-CoV-2 infection, significantly reduced lung tissue viral titres and expression of several inflammatory markers (i.e., IL-6, TNFα, CCL2 and CXCL10). It also inhibited the replication of all variants of concern in vitro. A modulation of the ceramide system in the lung tissues, as reflected by the increase in the ratio HexCer 16:0/Cer 16:0 in fluoxetine-treated mice, may contribute to explain these effects. Our findings demonstrate the antiviral and anti-inflammatory properties of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and its in vitro antiviral activity against variants of concern, establishing fluoxetine as a very promising candidate for the prevention and treatment of SARS-CoV-2 infection and disease pathogenesis.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Ceramidas , Modelos Animais de Doenças , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...