Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Artif Organs ; 41(11): 723-729, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29976128

RESUMO

INTRODUCTION:: Liver perfusion machines are close to becoming a reality in the transplantation field. However, depending on the techniques used and the goals pursued, their application is limited in the research field. Here, we present the entire development of a perfusion system with self-made engineering, completely autonomous controls, and a high degree of versatility that allows the design of different studies on liver functionality. METHODS:: A user-friendly interface permits real-time monitoring and remote control by the devices within the circuit. Centrifugal pumps allow the perfusate enter the organ with controlled pressures and flows at both hepatic artery and portal vein. The implementation of a hemofilter as a novel tool permits to control and maintain homeostasis. Peristaltic pumps adjust pH, extraction rate, and total volume by means of sensors. RESULTS:: Real-time monitoring facilitates liver functionality assessment. The controlled system shows rapid stabilization and quick responses to changes during 6 h of perfusion experiments. Furthermore, the integration of a hemofilter helps the system to eliminate toxic waste and maintain homeostasis. DISCUSSION:: The machine provides the basis of a perfusion system with autonomous controls and the implementation of a hemofilter that enables a more efficient control of hemostasis. Moreover, the developed hardware and software are subjected to further tuning for additional purposes such as pathophysiologic studies, suboptimal grafts recovery, or recellularization of decellularized scaffolds among others.


Assuntos
Transplante de Fígado/métodos , Fígado/irrigação sanguínea , Perfusão/métodos , Veia Porta , Animais , Artéria Hepática , Humanos , Preservação de Órgãos/métodos
2.
ASAIO J ; 64(4): 536-543, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28885378

RESUMO

The goal is to inform in depth on transcatheter aortic valve replacement (TAVR) prosthesis mechanical behavior, depending on frame type, design, and size, and how it crucially impacts the oversizing issue in clinical use, and ultimately the procedure outcome. Transcatheter aortic valve replacement is an established therapy for high-risk patients suffering from aortic stenosis, and the indication for TAVR is progressively expanding to intermediate-risk patients. Choosing the optimal oversizing degree is crucial to safely anchor the TAVR valve-which involves limiting the risks for embolism, aortic regurgitation, conductance disturbance, or annulus rupture-and to increase the valve prosthesis performance. The radial force (RF) profiles of five TAVR prostheses were measured in vitro: the CoreValve 23 and 26 (Medtronic, Minneapolis, MN), the Acurate neo S (Symetis, Écublens, Vaud, Switzerland), and the SAPIEN XT 23 and 26 (Edwards Lifesciences, Irvine, CA). Measurements were run with the RX Machine equipment (Machine Solutions Inc., Flagstaff, AZ), which is used in ISO standard tests for intravascular stents. Test protocols were adapted for TAVR prostheses. With the prostheses RF profiles' results, mechanical behavior differences could be described and discussed in terms of oversizing strategy and clinical impact for all five valves. Besides, crossing the prostheses' RF profiles with their recommended size windows made the assessment of borderline size cases possible and helped analyze the risks when accurate measurement of patient aortic annulus proves difficult. The prostheses' RF profiles bring new support in clinical decision-making for valve type and size in patients.


Assuntos
Tomada de Decisão Clínica/métodos , Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter/métodos , Valva Aórtica/cirurgia , Técnicas In Vitro , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA