Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(36): 9568-9576, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38108782

RESUMO

X-ray reflectance and film stress were measured for 12 bilayer and trilayer reflective interference coatings and compared with a single-layer Ir coating. The interference coatings comprise a base layer of W, Pt, or Ir, top layers of either C or B 4 C, and, in the case of the trilayer coatings, middle layers of either Co or Ni. The coatings were deposited by magnetron sputtering. Film stress was measured using the wafer curvature technique, while X-ray reflectance was measured at grazing incidence over the ∼0.1-10k e V energy band using synchrotron radiation. Re-measurements over a period of more than two years of both stress and X-ray reflectance were used to assess temporal stability. The X-ray reflectance of all 12 bilayer and trilayer coatings was found to be both stable over time and substantially higher than single-layer Ir over much of the energy range investigated, particularly below ∼4k e V, except near the B and C K-edges, and the Co and Ni L-edges, where we observe sharp, narrow drops in reflectance due to photo-absorption in layers containing these materials. Film stress was found to be substantially smaller than single-layer Ir in all cases as well; however, film stress was also found to change over time for all coatings (including the single-layer Ir coating). The effective area of future X-ray telescopes will be substantially higher if these high reflectance bilayer and/or trilayer coatings are used in place of single-layer coatings. Additionally, the smaller film stresses found in the bilayer and trilayer coatings relative to single-layer Ir will reduce coating-stress-driven mirror deformations. Nevertheless, as all the interference films studied here have stresses that are far from zero (albeit smaller than that of single-layer Ir), methods to mitigate such deformations must be developed in order to construct high-angular-resolution telescopes using thin mirror segments. Furthermore, unless film stress can be sufficiently stabilized over time, perhaps through thermal annealing, any such mitigation methods must also account for the temporal instability of film stress that was found in all coatings investigated here.

2.
Opt Express ; 31(16): 26724-26734, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710525

RESUMO

We developed a new method of making ultra-low blaze angle diffraction gratings for x-ray applications. The method is based on reduction of the blaze angle of a master grating by nanoimprint replication followed by a plasma etch. A master blazed grating with a relatively large blaze angle is fabricated by anisotropic wet etching of a Si single crystal substrate. The surface of the master grating is replicated by a polymer material on top of a quartz substrate by nanoimprinting. Then a second nanoimprinting is performed using the 1st replica as a mold to replicate the saw-tooth surface into a resist layer on top of a Si grating substrate. A reactive ion etch is used to transfer the grating grooves into the Si substrate. The plasma etch provides reduction of the groove depth by a factor defined by the ratio of the etch rates for the resist and Si. We demonstrate reduction of the blaze angle of a master grating by a factor of 5 during fabrication of a 200 lines/mm blazed grating with a blaze angle of 0.2°. We investigated the quality and performance of the fabricated low blaze angle gratings and evaluate process accuracy and reproducibility. The new blaze angle reduction method preserves the planarity of the optical surface of the grating substrate and at the same time provides improvement in the grating groove quality during the reduction process.

3.
Anal Sci ; 36(12): 1507-1511, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32830159

RESUMO

The photocurrent (sample current) of insulating 0.7-µm thick polyethylene terephthalate (PET) films on conductive substrates (C, Au, Cu) was clearly measured through the substrates during soft X-ray irradiation on the PET films. X-ray absorption measurements of the PET/conductive-substrates using the total-electron-yield (TEY) method by measuring sample current easily provide the X-ray absorption spectra (XAS) of PET films, which are independent of the substrates. From additional X-ray absorption measurements using self-standing PET/Au and Au/PET-films, I-V measurements, and thickness-dependent sample current measurements, it can be confirmed that electrically conductive paths form in the insulating PET film in thickness direction along the soft X-ray beam trajectory. Such phenomena enable easy and simple TEY-XAS measurements of insulating µm-order-thick samples.

4.
Chem Commun (Camb) ; 54(65): 8995-8998, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29972154

RESUMO

A metal-containing carbonaceous two-dimensional lattice was formed on a graphene plane by sublimation, deposition, and pyrolysis of Fe phthalocyanine (Pc). The formation and growth of the FePc-derived π-conjugated planar system were reflected by its orientation conversion from the perpendicular to horizontal mode and by the N K-edge X-ray absorption near-edge structure.

5.
Anal Sci ; 33(12): 1465-1468, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29225242

RESUMO

A novel friction tester has been developed to clarify the friction mechanism between engine oil and metals by in situ/operando measurements of the X-ray absorption near edge structure (XANES) using the total electron yield (TEY) method. The tester can perform frictional motion with engine oil and metals in a vacuum chamber under a vacuum of 10-7 Torr during TEY-XANES measurements in BL-6.3.2 at the Advanced Light Source (ALS). From in situ XANES measurements in the C K and Fe L regions, the organic molecule layers at the oil/metals interfaces have been successfully observed.

6.
Appl Opt ; 56(12): 3325-3328, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28430243

RESUMO

It is now well established that extreme ultraviolet (EUV) mask multilayer roughness leads to wafer-plane line-width roughness (LWR) in the lithography process. Analysis and modeling done to date has assumed, however, that the roughness leading to scatter is primarily a phase effect and that the amplitude can be ignored. Under this assumption, simple scattering measurements can be used to characterize the statistical properties of the mask roughness. Here, we explore the implications of this simplifying assumption by modeling the imaging impacts of the roughness amplitude component as a function of the balance between amplitude and phase induced scatter. In addition to model-based analysis, we also use an EUV microscope to compare experimental through focus data to modeling in order to assess the actual amount of amplitude roughness on a typical EUV multilayer mask. The results indicate that amplitude roughness accounts for less than 1% of the total scatter for typical EUV masks.

7.
Appl Opt ; 55(5): 984-8, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26906363

RESUMO

We describe the design and fabrication of a ruthenium beam separator used to simultaneously attenuate infrared light and reflect soft x rays. Measurements in the infrared and soft x-ray regions showed the beam separator to have a reflectivity of 50%-85% in the wavelength region from 6 to 10 nm at a grazing incidence angle of 7.5 deg and 4.3% at 800 nm and the same angle of grazing incidence, indicating that the amount of attenuation is 0.05-0.09. These results show that this beam separator could provide an effective means for separating IR light from soft x rays in light generated by high-order harmonic generation sources.

8.
Appl Opt ; 54(18): 5850-60, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-26193039

RESUMO

A new extreme ultraviolet (EUV) multilayer coating has been developed comprising Pd and Y layers with thin B4C barrier layers at each interface, for normal incidence applications near 10 nm wavelength. Periodic, nonperiodic, and dual-stack coatings have been investigated and compared with similar structures comprising either Mo/Y or Pd/B4C bilayers. We find that Pd/B4C/Y multilayers provide higher reflectance than either Mo/Y or Pd/B4C, with much lower film stress than Pd/B4C. We have also investigated the performance of periodic multilayers comprising repetitions of Pd/Y, Ru/Y, or Ru/B4C/Y, as well as Pd/B4C multilayers deposited using reactive sputtering with an Ar:N2 gas mixture in order to reduce stress: these material combinations were all found to provide poor EUV performance. The temporal stability of a periodic Pd/B4C/Y multilayer stored in air was investigated over a period of 16 months, and a slight reduction in peak reflectance was observed. Periodic Pd/B4C/Y multilayers were also found to be thermally stable up to 100°C; at higher temperatures (200°C and 300°C) we observe a slight reduction in peak reflectance and a slight increase in multilayer period. High-resolution transmission electron microscopy and selected area diffraction of an as-deposited Pd/B4C/Y film indicates a fully amorphous structure, with interfaces that are both smoother and more abrupt than those observed in a comparable Pd/B4C multilayer in which the Pd layers are polycrystalline. The new Pd/B4C/Y multilayers are suitable for normal-incidence imaging and spectroscopy applications, including solar physics, plasma physics, high-brightness EUV light sources, and others.

9.
Opt Express ; 22(22): 26526-36, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25401804

RESUMO

Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV-543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assisted interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.

10.
Nat Commun ; 5: 5441, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25399688

RESUMO

Heterogeneous processes at solid/gas, liquid/gas and solid/liquid interfaces are ubiquitous in modern devices and technologies but often difficult to study quantitatively. Full characterization requires measuring the depth profiles of chemical composition and state with enhanced sensitivity to narrow interfacial regions of a few to several nm in extent over those originating from the bulk phases on either side of the interface. We show for a model system of NaOH and CsOH in an ~1-nm thick hydrated layer on α-Fe2O3 (haematite) that combining ambient-pressure X-ray photoelectron spectroscopy and standing-wave photoemission spectroscopy provides the spatial arrangement of the bulk and interface chemical species, as well as local potential energy variations, along the direction perpendicular to the interface with sub-nm accuracy. Standing-wave ambient-pressure photoemission spectroscopy is thus a very promising technique for measuring such important interfaces, with relevance to energy research, heterogeneous catalysis, electrochemistry, and atmospheric and environmental science.

11.
Opt Express ; 22(17): 20144-54, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25321224

RESUMO

A self-contained electro-optical module for scanning extreme ultraviolet (EUV) reflection microscopy at 13.5 nm wavelength has been developed. The system has been designed to work with stand-alone commercially available EUV high harmonic generation (HHG) sources through the implementation of narrowband harmonic selecting multilayers and off-axis elliptical short focal length zoneplates. The module has been successfully integrated into an EUV mask scanning microscope achieving diffraction limited imaging performance (84 nm point spread function).

12.
Opt Express ; 21(19): 21728-40, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24104067

RESUMO

Extending single attosecond pulse technology from currently sub-200 eV to the so called 'water window' spectral range may enable for the first time the unique investigation of ultrafast electronic processes within the core states of bio-molecules as proteins or other organic materials. Aperiodic multilayer mirrors serve as key components to shape these attosecond pulses with a high degree of freedom and enable tailored short pulse pump-probe experiments. Here, we report on chirped CrSc multilayer mirrors, fabricated by ion beam deposition with sub-angstrom precision, designed for attosecond pulse shaping in the 'water window' spectral range.


Assuntos
Biopolímeros/análise , Biopolímeros/química , Lasers , Lentes , Nefelometria e Turbidimetria/instrumentação , Refratometria/instrumentação , Água/química , Desenho de Equipamento , Análise de Falha de Equipamento
13.
Opt Express ; 21(19): 21970-80, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24104090

RESUMO

We demonstrate the first general tabletop EUV coherent microscope that can image extended, non-isolated, non-periodic, objects. By implementing keyhole coherent diffractive imaging with curved mirrors and a tabletop high harmonic source, we achieve improved efficiency of the imaging system as well as more uniform illumination at the sample, when compared with what is possible using Fresnel zone plates. Moreover, we show that the unscattered light from a semi-transparent sample can be used as a holographic reference wave, allowing quantitative information about the thickness of the sample to be extracted from the retrieved image. Finally, we show that excellent tabletop image fidelity is achieved by comparing the retrieved images with scanning electron and atomic force microscopy images, and show superior capabilities in some cases.


Assuntos
Lentes , Iluminação/instrumentação , Microscopia/instrumentação , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
14.
J Synchrotron Radiat ; 20(Pt 2): 249-57, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23412481

RESUMO

Amplitude-division beam splitters for XUV radiation sources have been developed and extensively characterized. Mo/Si multilayer coatings were deposited on 50 nm-thick SiN membranes. By changing the multilayer structure (periodicity, number of bilayers, etc.) the intensity of the reflected and transmitted beams were optimized for selected incident radiation parameters (wavelength, incident angle). The developed optical elements were characterized by means of XUV reflectometry and transmission measurements, atomic force microscopy and optical interferometry. Special attention was paid to the spatial homogeneity of the optical response and reflected beam wavefront distortions. Here the results of the characterization are presented and improvements required for advanced applications at XUV free-electron lasers are identified. A flatness as low as 4 nm r.m.s. on 3 × 3 mm beam splitters and 22 nm r.m.s. on 10 × 10 mm beam splitters has been obtained. The high-spatial-frequency surface roughness was about 0.7-1 nm r.m.s. The middle-spatial-frequency roughness was in the range 0.2-0.8 nm r.m.s. The reflection and transmission of the beam splitters were found to be very homogeneous, with a deviation of less than 2% across the full optical element.

15.
Faraday Discuss ; 157: 463-74; discussion 475-500, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23230783

RESUMO

Ultrafast excited-state evolution in polypyridyl Fe(II) complexes is of fundamental interest for understanding the origins of the sub-ps spin-state changes that occur upon photoexcitation of this class of compounds as well as for the potential impact such ultrafast dynamics have on incorporation of these compounds in solar energy conversion schemes or switchable optical storage technologies. We have demonstrated that ground-state and, more importantly, ultrafast time-resolved X-ray absorption methods can offer unique insights into the interplay between electronic and geometric structure that underpins the photo-induced dynamics of this class of compounds. The present contribution examines in greater detail how the symmetry of the ligand field surrounding the metal ion can be probed using these X-ray techniques. In particular, we show that steady-state K-edge spectroscopy of the nearest-neighbour nitrogen atoms reveals the characteristic chemical environment of the respective ligands and suggests an interesting target for future charge-transfer femtosecond and attosecond spectroscopy in the X-ray water window.

16.
Opt Express ; 20(21): 24018-29, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23188369

RESUMO

We have developed new, Mg/SiC multilayer coatings with corrosion barriers which can be used to efficiently and simultaneously reflect extreme ultraviolet (EUV) radiation in single or multiple narrow bands centered at wavelengths in the spectral region from 25 to 80 nm. Corrosion mitigation was attempted through the use of Al-Mg or Al thin layers. Three different multilayer design concepts were developed and deposited by magnetron sputtering and the reflectance was measured at near-normal incidence in a broad spectral range. Standard Mg/SiC multilayers were also deposited and measured for comparison. They were shown to efficiently reflect radiation at a wavelength of 76.9 nm with a peak reflectance of 40.6% at near-normal incidence, the highest experimental reflectance reported at this wavelength for a narrowband coating. The demonstration of multilayer coatings with corrosion resistance and multiple-wavelength EUV performance is of great interest in the development of mirrors for space-borne solar physics telescopes and other applications requiring long-lasting coatings with narrowband response in multiple emission lines across the EUV range.


Assuntos
Compostos Inorgânicos de Carbono/química , Lentes , Magnésio/química , Compostos de Silício/química , Corrosão , Teste de Materiais , Raios Ultravioleta
17.
Appl Opt ; 51(12): 2118-28, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22534924

RESUMO

This work discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 to 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B4C) coating especially optimized for the LCLS FEL conditions was deposited on all SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.


Assuntos
Luz , Óptica e Fotônica/métodos , Calibragem , Elétrons , Desenho de Equipamento , Lasers , Microscopia de Força Atômica/métodos , Fótons , Silício/química , Raios X
18.
J Phys Chem A ; 116(6): 1527-31, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22217144

RESUMO

The chemical states of organic semiconductors were investigated by total-electron-yield soft X-ray absorption spectroscopy (TEY-XAS) and first-principles calculations. The organic semiconductors, pentacene (C(22)H(14)) and pentacenequinone (C(22)H(12)O(2)), were subjected to TEY-XAS and the experimental spectra obtained were compared with the 1s core-level excited spectra of C and O atoms, calculated by a first-principles planewave pseudopotential method. Excellent agreement between the measured and the calculated spectra were obtained for both materials. Using this methodology, we examined the chemical states of the aged pentacene, and confirmed that both C-OH and C═O chemical bonds are generated by exposure to air. This result implies that not only oxygen but also humidity causes pentacene oxidation.

19.
ACS Appl Mater Interfaces ; 3(12): 4837-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22091636

RESUMO

Various carbon materials with a characteristic morphology and pore structure have been produced using template methods in which a carbon-template composite is once formed and the characteristic features derived from the template are generated after the template removal. In this study, hemoglobin, which is a natural compound that could be abundantly and inexpensively obtained, was used as the carbon material source to produce a carbonaceous noble-metal-free fuel cell cathode catalyst. Magnesium oxide was used as the template concurrently generated with the hemoglobin carbonization from magnesium acetate mixed with hemoglobin as the starting material mixture to enable pore development for improving the activity of the carbonized hemoglobin for the cathodic oxygen reduction. After removal of the MgO template, the substantially developed pores were generated in the carbonized hemoglobin with an amorphous structure observed by total-electron-yield X-ray absorption. The extended X-ray absorption fine structure at the Fe-K edge indicated that Fe was coordinated with four nitrogen atoms (Fe-N(4) moiety) in the carbonized hemoglobin. The oxygen reduction activity of the carbonized hemoglobin evaluated using rotating disk electrodes was dependent on the pore structure. The highly developed pores led to an improved activity.


Assuntos
Fontes de Energia Bioelétrica , Hemoglobinas/química , Óxido de Magnésio/química , Catálise , Eletrodos , Oxirredução , Oxigênio/química , Porosidade
20.
Appl Opt ; 50(10): 1364-73, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21460902

RESUMO

We report on measurements of the diffraction efficiency of 200-nm-period freestanding blazed transmission gratings for wavelengths in the 0.96 to 19.4 nm range. These critical-angle transmission (CAT) gratings achieve highly efficient blazing over a broad band via total external reflection off the sidewalls of smooth, tens of nanometer thin ultrahigh aspect-ratio silicon grating bars and thus combine the advantages of blazed x-ray reflection gratings with those of more conventional x-ray transmission gratings. Prototype gratings with maximum depths of 3.2 and 6 µm were investigated at two different blaze angles. In these initial CAT gratings the grating bars are monolithically connected to a cross support mesh that only leaves less than half of the grating area unobstructed. Because of our initial fabrication approach, the support mesh bars feature a strongly trapezoidal cross section that leads to varying CAT grating depths and partial absorption of diffracted orders. While theory predicts broadband absolute diffraction efficiencies as high as 60% for ideal CAT gratings without a support mesh, experimental results show efficiencies in the range of ∼50-100% of theoretical predictions when taking the effects of the support mesh into account. Future minimization of the support mesh therefore promises broadband CAT grating absolute diffraction efficiencies of 50% or higher.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...