Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067618

RESUMO

Antibodies and their derivatives (scFv, Fabs, etc.) represent a unique class of biomolecules that combine selectivity with the ability to target drug delivery. Currently, one of the most promising endeavors in this field is the development of molecular diagnostic tools and antibody-based therapeutic agents, including antibody-drug conjugates (ADCs). To meet this challenge, it is imperative to advance methods for modifying antibodies. A particularly promising strategy involves the introduction of carbonyl groups into the antibody that are amenable to further modification by biorthogonal reactions, namely aliphatic, aromatic, and α-oxo aldehydes, as well as aliphatic and aryl-alkyl ketones. In this review, we summarize the preparation methods and applications of site-specific antibody conjugates that are synthesized using this approach.


Assuntos
Antineoplásicos , Imunoconjugados , Anticorpos , Imunoconjugados/uso terapêutico , Antígenos , Sistemas de Liberação de Medicamentos , Antineoplásicos/uso terapêutico
2.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003673

RESUMO

Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity. Here, we report modification of the lipophilic part of the molecule, perylene, by the introduction of 4-, 8-, and 12-carbon alkyls into position 9(10) of the perylene residue. Using Friedel-Crafts acylation and Wolff-Kishner reduction, three 3-acetyl-9(10)-alkylperylenes were synthesized from perylene and used to prepare 9 nucleoside and 12 non-nucleoside amphipathic derivatives. These compounds were characterized as fluorophores and singlet oxygen generators, as well as tested as antivirals against herpes virus-1 (HSV-1) and vesicular stomatitis virus (VSV), both known for causing superficial skin/mucosa lesions and thus serving as suitable candidates for photodynamic therapy. The results suggest that derivatives with a short alkyl chain (butyl) have strong antiviral activity, whereas the introduction of longer alkyl substituents (n = 8 and 12) to the perylenyethynyl scaffold results in a dramatic reduction of antiviral activity. This phenomenon is likely attributable to the increased lipophilicity of the compounds and their ability to form insoluble aggregates. Moreover, molecular dynamic studies revealed that alkylated perylene derivatives are predominately located closer to the middle of the bilayer compared to non-alkylated derivatives. The predicted probability of superficial positioning correlated with antiviral activity, suggesting that singlet oxygen generation is achieved in the subsurface layer of the membrane, where the perylene group is more accessible to dissolved oxygen.


Assuntos
Herpesvirus Humano 1 , Perileno , Fotoquimioterapia , Perileno/farmacologia , Oxigênio Singlete , Antivirais/farmacologia , Antivirais/química , Fármacos Fotossensibilizantes/farmacologia
3.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982208

RESUMO

A universal approach to the construction of antibody-drug conjugates (ADCs) has been developed. It relies on periodate oxidation of naturally present glycans of immunoglobulin G, followed by oxime ligation and, optionally, copper(I)-catalyzed alkyne-azide cycloaddition for conjugation with a toxic payload. The introduction of highly absorbing cyanine dyes into the linker allows for facile determination of the drug-antibody ratio. We applied this methodology to the synthesis of cytotoxic conjugates of an antibody against the tumor-associated antigen PRAME with doxorubicin and monomethyl auristatin E (MMAE). The resultant conjugates retained their affinity to a large extent, yet their cytotoxicity in vitro varied dramatically: while the doxorubicin-based conjugate did not produce any effect on cells, the MMAE-based one demonstrated specific activity against PRAME-expressing cancer cell lines. Importantly, the latter conjugate constitutes the first reported example of a PRAME-targeting ADC.


Assuntos
Antineoplásicos , Imunoconjugados , Imunoconjugados/farmacologia , Imunoglobulina G , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Doxorrubicina
4.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615611

RESUMO

Fluorescent antibodies have proved to be an invaluable tool for molecular biology and diagnostics. They are routinely produced by modification of lysine residues, which leads to high heterogeneity. As such, their affinity may be compromised if the antigen-binding site is affected, the probability of which increases along with the degree of labeling. In this work, we propose a methodology for the synthesis of site-specific antibody-dye conjugates with a high degree of labeling. To this end, we synthesized two oxyamine-based branched triazide linkers and coupled them with a periodate-oxidized anti-PRAME antibody 6H8; two oxyamine-based linear monoazide linkers of similar structure were used as controls. The azide-labeled antibodies were subsequently conjugated with fluorescent dyes via SPAAC, a copper-free click reaction. Compared to their counterparts made with linear linkers, the branched conjugates possessed a higher degree of labeling. The utility of the methodology was demonstrated in the detection of the PRAME protein on the surface of the cell by flow cytometry.


Assuntos
Anticorpos , Corantes Fluorescentes , Corantes Fluorescentes/química , Antígenos
5.
J Phys Chem B ; 122(1): 137-143, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29206458

RESUMO

Triarylmethyl (trityl, TAM) radicals are a promising class of spin labels for nanometer-scale distance measurements in biomolecules at physiological temperatures. However, to date, existing approaches to site-directed TAM labeling of DNA have been limited to label attachment at the termini of oligonucleotides, thus hindering a majority of demanded applications. Herein, we report a new versatile strategy for TAM attachment at arbitrary sites of nucleic acids. It utilizes an achiral non-nucleoside phosphoramidite monomer for automated solid-phase synthesis of oligonucleotides, which are then postsynthetically functionalized with TAM. We demonstrate a synthesis of a set of oligonucleotide complexes that are TAM-labeled at internal or terminal sites, as well as the possibility of measuring interspin distances up to ∼5-6 nm at 298 K using double quantum coherence electron paramagnetic resonance (EPR). Implementation of the developed approach strongly broadens the scope of nucleic acids and nucleoprotein complexes available for nanoscale structural EPR studies at room temperatures.


Assuntos
DNA/química , Sondas Moleculares/química , Oligodesoxirribonucleotídeos/química , Marcadores de Spin , Compostos de Tritil/química , Espectroscopia de Ressonância de Spin Eletrônica , Simulação de Dinâmica Molecular , Oligodesoxirribonucleotídeos/síntese química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...