Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902855

RESUMO

Auger-type processes are ubiquitous in nanoscale materials because quantum confinement enhances Coulomb interactions, and there exist large densities of states. Modeling Auger processes requires the modification of nonadiabatic (NA) molecular dynamics algorithms to include transitions caused by both NA and Coulomb couplings. The system is split into quantum and classical subsystems, e.g., electrons and vibrations, and as a result, energy conservation becomes nontrivial. In surface hopping, an electronic transition induced by NA coupling is accompanied by a classical velocity readjustment to ensure conservation of the total quantum-classical energy. A different treatment is needed for Auger transitions driven by Coulomb interactions. We develop a nonadiabatic molecular dynamics methodology that meticulously differentiates the energy redistribution accompanying hops induced by the NA coupling and the Coulomb interaction and correctly conserves the total energy at each transition. If the transition is driven by a Coulomb interaction, the hop energy is redistributed within the quantum electronic subsystem only. If the transition is NA, the energy is redistributed between the quantum and classical subsystems. Properly maintaining energy conservation for both types of transitions is crucial to generate a correct order of events, obtain accurate transition times, maintain a proper statistical distribution of state populations, and reach thermodynamic equilibrium. We test the method with biexciton annihilation and Auger-assisted hot electron relaxation in a CdSe quantum dot. The sequence of Auger and phonon-driven processes and the calculated time scales are in excellent agreement with the experimental results. The developed approach can be coupled with any surface-hopping method and provides a crucial practical advance to study charge-carrier dynamics in the nanoscale and condensed matter systems.

2.
J Phys Chem Lett ; 14(32): 7274-7282, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37556319

RESUMO

Decoherence plays an important role in nonadiabatic (NA) molecular dynamics (MD) simulations because it provides a physical mechanism for trajectory hopping and can alter transition rates by orders of magnitude. Generally, decoherence effects slow quantum transitions, as exemplified by the quantum Zeno effect: in the limit of infinitely fast decoherence, the transitions stop. If the measurements are not sufficiently frequent, an opposite quantum anti-Zeno effect occurs, in which the transitions are accelerated with faster decoherence. Using two common NA-MD approaches, fewest switches surface hopping and decoherence-induced surface hopping, combined with analytic examination, we demonstrate that including decoherence into NA-MD slows down NA transitions; however, many realistic systems operate in the anti-Zeno regime. Therefore, it is important that NA-MD methods describe both Zeno and anti-Zeno effects. Numerical simulations of charge trapping and relaxation in graphitic carbon nitride suggest that time-dependent NA Hamiltonians encountered in realistic systems produce robust results with respect to errors in the decoherence time, a favorable feature for NA-MD simulations.

3.
Nanoscale ; 14(29): 10514-10523, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35833340

RESUMO

Thermal transport at nanoscale metal-semiconductor interfaces via electron-phonon coupling is crucial for applications of modern microelectronic, electro-optic and thermoelectric devices. To enhance the device performance, the heat flow can be regulated by modifying the interfacial atomic interactions. We use ab initio time-dependent density functional theory combined with non-adiabatic molecular dynamics to study how the hot electron and hole relaxation rates change on incorporating a thin Ti adhesion layer at the Au/WSe2 interface. The excited charge carrier relaxation is much faster in Au/Ti/WSe2 due to the enhanced electron-phonon coupling, rationalized by the following reasons: (1) Ti atoms are lighter than Au, W and Se atoms and move faster. (2) Ti has a significant contribution to the electronic properties in the relevant energy range. (3) Ti interacts strongly with WSe2 and promotes its bond-scissoring which causes Fermi-level pinning, making WSe2 contribute to electronic properties around the Fermi level. The changes in the relaxation rates are more pronounced for excited electrons compared to holes because both relative and absolute Ti contributions to the electronic properties are larger above than below the Fermi level. The results provide guidance for improving the design of novel and robust materials by optimizing the heat dissipation at metal-semiconductor interfaces.

4.
J Phys Chem Lett ; 13(4): 1033-1041, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35073096

RESUMO

Significant efforts are focused on defect-engineering of metal-free graphitic carbon nitride (g-C3N4) to amplify its efficacy. A conceptually new multidefect-modified g-C3N4 having simultaneously two or more defects has attracted strong attention for its enhanced photocatalytic properties. We model and compare the excited state dynamics in g-C3N4 with (i) nitrogen defects (N vacancy and CN group) and (ii) dual defects (N vacancy, CN group, and O doping) and show that the nonradiative recombination of charge carriers in these systems follows the Shockley-Read-Hall mechanism. The nitrogen defects create three midgap states that trap charges and act as recombination centers. The dual-defect modified systems exhibit superior properties compared with pristine g-C3N4 because the defects facilitate rapid charge separation and extend the spectrum of absorbed light. The system doped with O shows better performance due to enhanced carrier lifetime and higher oxidation potential caused by a downshifted valence band. The study provides guidance for rational design of stable and efficient photocatalytic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...