Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864374

RESUMO

Long terminal repeat (LTR)-retrotransposons are significant contributors to the evolution and diversity of eukaryotic genomes. Their RNA genomes (gRNA) serve as a template for protein synthesis and reverse transcription to a DNA copy, which can integrate into the host genome. Here, we used the SHAPE-MaP strategy to explore Ty3 retrotransposon gRNA structure in yeast and under cell-free conditions. Our study reveals the structural dynamics of Ty3 gRNA and the well-folded core, formed independently of the cellular environment. Based on the detailed map of Ty3 gRNA structure, we characterized the structural context of cis-acting sequences involved in reverse transcription and frameshifting. We also identified a novel functional sequence as a potential initiator for Ty3 gRNA dimerization. Our data indicate that the dimer is maintained by direct interaction between short palindromic sequences at the 5' ends of the two Ty3 gRNAs, resembling the model characteristic for other retroelements like HIV-1 and Ty1. This work points out a range of cell-dependent and -independent Ty3 gRNA structural changes that provide a solid background for studies on RNA structure-function relationships important for retroelement biology.

2.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077037

RESUMO

RNA is a unique biomolecule that is involved in a variety of fundamental biological functions, all of which depend solely on its structure and dynamics. Since the experimental determination of crystal RNA structures is laborious, computational 3D structure prediction methods are experiencing an ongoing and thriving development. Such methods can lead to many models; thus, it is necessary to build comparisons and extract common structural motifs for further medical or biological studies. Here, we introduce a computational pipeline dedicated to reference-free high-throughput comparative analysis of 3D RNA structures. We show its application in the RNA-Puzzles challenge, in which five participating groups attempted to predict the three-dimensional structures of 5'- and 3'-untranslated regions (UTRs) of the SARS-CoV-2 genome. We report the results of this puzzle and discuss the structural motifs obtained from the analysis. All simulated models and tools incorporated into the pipeline are open to scientific and academic use.


Assuntos
COVID-19 , RNA , Regiões 3' não Traduzidas , Humanos , Conformação de Ácido Nucleico , RNA/química , SARS-CoV-2
3.
Viruses ; 14(9)2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36146813

RESUMO

The structural transitions RNAs undergo during trafficking are not well understood. Here, we used the well-developed yeast Ty1 retrotransposon to provide the first structural model of genome (g) RNA in the nucleus from a retrovirus-like transposon. Through a detailed comparison of nuclear Ty1 gRNA structure with those established in the cytoplasm, virus-like particles (VLPs), and those synthesized in vitro, we detected Ty1 gRNA structural alterations that occur during retrotransposition. Full-length Ty1 gRNA serves as the mRNA for Gag and Gag-Pol proteins and as the genome that is reverse transcribed within VLPs. We show that about 60% of base pairs predicted for the nuclear Ty1 gRNA appear in the cytoplasm, and active translation does not account for such structural differences. Most of the shared base pairs are represented by short-range interactions, whereas the long-distance pairings seem unique for each compartment. Highly structured motifs tend to be preserved after nuclear export of Ty1 gRNA. In addition, our study highlights the important role of Ty1 Gag in mediating critical RNA-RNA interactions required for retrotransposition.


Assuntos
RNA , Retroelementos , RNA/genética , RNA Guia de Cinetoplastídeos , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequências Repetidas Terminais
4.
Nucleic Acids Res ; 50(14): 8226-8239, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819231

RESUMO

Regnase-1 is an evolutionarily conserved endoribonuclease. It degrades diverse mRNAs important for many biological processes including immune homeostasis, development and cancer. There are two competing models of Regnase-1-mediated mRNA silencing. One model postulates that Regnase-1 works together with another RNA-binding protein, Roquin-1, which recruits Regnase-1 to specific mRNAs. The other model proposes that the two proteins function separately. Studying REGE-1, the Caenorhabditis elegans ortholog of Regnase-1, we have uncovered its functional relationship with RLE-1, the nematode counterpart of Roquin-1. While both proteins are essential for mRNA silencing, REGE-1 and RLE-1 appear to associate with target mRNA independently of each other. Thus, although the functional interdependence between REGE-1/Regnase-1 and RLE-1/Roquin-1 is conserved, the underlying mechanisms may display species-specific variation, providing a rare perspective on the evolution of this important post-transcriptional regulatory mechanism.


Assuntos
Endorribonucleases , Ribonucleases , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Endorribonucleases/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleases/metabolismo
5.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445809

RESUMO

A universal feature of retroelement propagation is the formation of distinct nucleoprotein complexes mediated by the Gag capsid protein. The Ty1 retrotransposon Gag protein from Saccharomyces cerevisiae lacks sequence homology with retroviral Gag, but is functionally related. In addition to capsid assembly functions, Ty1 Gag promotes Ty1 RNA dimerization and cyclization and initiation of reverse transcription. Direct interactions between Gag and retrotransposon genomic RNA (gRNA) are needed for Ty1 replication, and mutations in the RNA-binding domain disrupt nucleation of retrosomes and assembly of functional virus-like particles (VLPs). Unlike retroviral Gag, the specificity of Ty1 Gag-RNA interactions remain poorly understood. Here we use microscale thermophoresis (MST) and electrophoretic mobility shift assays (EMSA) to analyze interactions of immature and mature Ty1 Gag with RNAs. The salt-dependent experiments showed that Ty1 Gag binds with high and similar affinity to different RNAs. However, we observed a preferential interaction between Ty1 Gag and Ty1 RNA containing a packaging signal (Psi) in RNA competition analyses. We also uncover a relationship between Ty1 RNA structure and Gag binding involving the pseudoknot present on Ty1 gRNA. In all likelihood, the differences in Gag binding affinity detected in vitro only partially explain selective Ty1 RNA packaging into VLPs in vivo.


Assuntos
Produtos do Gene gag/genética , Ligação Proteica/genética , RNA/genética , Retroelementos/genética , Dimerização , Retroviridae/genética , Saccharomyces cerevisiae/genética
6.
Nucleic Acids Res ; 49(5): 2878-2893, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33621339

RESUMO

Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.


Assuntos
Genoma Viral , RNA Viral/química , Retroelementos , Pareamento de Bases , Dimerização , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA de Transferência de Metionina/metabolismo , RNA Viral/metabolismo , Saccharomyces/virologia , Sequências Repetidas Terminais
7.
PLoS One ; 15(10): e0239287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002005

RESUMO

RNAs adopt specific structures to perform their functions, which are critical to fundamental cellular processes. For decades, these structures have been determined and modeled with strong support from computational methods. Still, the accuracy of the latter ones depends on the availability of experimental data, for example, chemical probing information that can define pseudo-energy constraints for RNA folding algorithms. At the same time, diverse computational tools have been developed to facilitate analysis and visualization of data from RNA structure probing experiments followed by capillary electrophoresis or next-generation sequencing. RNAthor, a new software tool for the fully automated normalization of SHAPE and DMS probing data resolved by capillary electrophoresis, has recently joined this collection. RNAthor automatically identifies unreliable probing data. It normalizes the reactivity information to a uniform scale and uses it in the RNA secondary structure prediction. Our web server also provides tools for fast and easy RNA probing data visualization and statistical analysis that facilitates the comparison of multiple data sets. RNAthor is freely available at http://rnathor.cs.put.poznan.pl/.


Assuntos
Biologia Computacional/métodos , Eletroforese Capilar , Dobramento de RNA , RNA/química , Estatística como Assunto/métodos , Internet , Fatores de Tempo
8.
RNA Biol ; 16(12): 1749-1763, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31469343

RESUMO

During replication of long terminal repeat (LTR)-retrotransposons, their proteins and genome (g) RNA assemble into virus-like particles (VLPs) that are not infectious but functionally related to retroviral virions. Both virions and VLPs contain gRNA in a dimeric form, but contrary to retroviruses, little is known about how gRNA dimerization and packaging occurs in LTR-retrotransposons. The LTR-retrotransposon Ty1 from Saccharomyces cerevisiae is an informative model for studying LTR-retrotransposon and retrovirus replication. Using structural, mutational and functional analyses, we explored dimerization of Ty1 genomic RNA. We provide direct evidence that interactions of self-complementary PAL1 and PAL2 palindromic sequences localized within the 5'UTR are essential for Ty1 gRNA dimer formation. Mutations disrupting PAL1-PAL2 complementarity restricted RNA dimerization in vitro and Ty1 mobility in vivo. Although dimer formation and mobility of these mutants was inhibited, our work suggests that Ty1 RNA can dimerize via alternative contact points. In contrast to previous studies, we cannot confirm a role for PAL3, tRNAiMet as well as recently proposed initial kissing-loop interactions in dimer formation. Our data also supports the critical role of Ty1 Gag in RNA dimerization. Mature Ty1 Gag binds in the proximity of sequences involved in RNA dimerization and tRNAiMet annealing, but the 5' pseudoknot in Ty1 RNA may constitute a preferred Gag-binding site. Taken together, these results expand our understanding of genome dimerization and packaging strategies utilized by LTR-retroelements.


Assuntos
RNA de Transferência/genética , RNA Viral/genética , Retroelementos , Retroviridae/genética , Saccharomyces cerevisiae/virologia , Regiões 5' não Traduzidas , Pareamento de Bases , Sequência de Bases , Dimerização , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , RNA de Transferência/química , RNA de Transferência/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Retroviridae/metabolismo , Saccharomyces cerevisiae/genética , Vírion/genética , Vírion/metabolismo , Replicação Viral
9.
Mob Genet Elements ; 6(2): e1154637, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27141325

RESUMO

The long terminal repeat (LTR) and non-LTR retrotransposons comprise approximately half of the human genome, and we are only beginning to understand their influence on genome function and evolution. The LTR retrotransposon Ty1 is the most abundant mobile genetic element in the S. cerevisiae reference genome. Ty1 replicates via an RNA intermediate and shares several important structural and functional characteristics with retroviruses. However, unlike retroviruses Ty1 retrotransposition is not infectious. Retrotransposons integrations can cause mutations and genome instability. Despite the fact that S. cerevisiae lacks eukaryotic defense mechanisms such as RNAi, they maintain a relatively low copy number of the Ty1 retrotransposon in their genomes. A novel restriction factor derived from the C-terminal half of Gag (p22/p18) and encoded by internally initiated transcript inhibits retrotransposition in a dose-dependent manner. Therefore, Ty1 evolved a specific GAG organization and expression strategy to produce products both essential and antagonistic for retrotransposon movement. In this commentary we discuss our recent research aimed at defining steps of Ty1 replication influenced by p22/p18 with particular emphasis on the nucleic acid chaperone functions carried out by Gag and the restriction factor.

10.
Nucleic Acids Res ; 43(15): 7414-31, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26160887

RESUMO

Ty1 Gag comprises the capsid of virus-like particles and provides nucleic acid chaperone (NAC) functions during retrotransposition in budding yeast. A subgenomic Ty1 mRNA encodes a truncated Gag protein (p22) that is cleaved by Ty1 protease to form p18. p22/p18 strongly inhibits transposition and can be considered an element-encoded restriction factor. Here, we show that only p22 and its short derivatives restrict Ty1 mobility whereas other regions of GAG inhibit mobility weakly if at all. Mutational analyses suggest that p22/p18 is synthesized from either of two closely spaced AUG codons. Interestingly, AUG1p18 and AUG2p18 proteins display different properties, even though both contain a region crucial for RNA binding and NAC activity. AUG1p18 shows highly reduced NAC activity but specific binding to Ty1 RNA, whereas AUG2p18 shows the converse behavior. p22/p18 affects RNA encapsidation and a mutant derivative defective for RNA binding inhibits the RNA chaperone activity of the C-terminal region (CTR) of Gag-p45. Moreover, affinity pulldowns show that p18 and the CTR interact. These results support the idea that one aspect of Ty1 restriction involves inhibition of Gag-p45 NAC functions by p22/p18-Gag interactions.


Assuntos
Produtos do Gene gag/metabolismo , Retroelementos , Códon de Iniciação , DNA Viral/metabolismo , Dimerização , Produtos do Gene gag/biossíntese , Produtos do Gene gag/química , Produtos do Gene gag/genética , HIV-1/genética , Ligação Proteica , Biossíntese de Proteínas , RNA/metabolismo , Capuzes de RNA/metabolismo , RNA de Transferência de Metionina/metabolismo , Saccharomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...