Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 80(12): 6520-4, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26011255

RESUMO

Disproving a long C-C-bond textbook example: The reported 1.643 Å C-C bond in 5-cyano-1,3-dehydroadamantane was redetermined and "only" amounts to 1.584 Å. While this value is well reproduced with ab initio methods, some common DFT approaches perform poorly and are only consistent with CCSD(T)/cc-pVTZ optimizations for noninverted carbons. Large deviations from experiment were also found for other molecules with atypical electron density distributions, e.g., cubane, bicyclo[2.2.0]hexane, and bicyclo[2.1.0]- and bicyclo[1.1.1]pentane, thereby presenting challenging structures for some DFT implementations.

2.
J Org Chem ; 79(4): 1861-6, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24433143

RESUMO

Homodiamantane bromination and nitroxylation are accompanied by contraction of the seven-membered ring to give the corresponding substituted 1-diamantylmethyl derivatives. In contrast, CH-bond hydroxylations with dimethyldioxirane retain the cage and give both apically and medially substituted homodiamantanes. The product ratios are in accord with the barriers for the oxygen insertion computed with density functional theory methods only if solvation is included through a polarizable continuum model. B3LYP-D3 and M06-2X computations with a 6-31G(d,p) basis set on the oligomeric van der Waals complexes predict the potential of homodiamantane derivatives for surface modifications with conformationally slightly flexible diamondoid homologues.

3.
J Chem Phys ; 139(8): 084310, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24007000

RESUMO

We investigated the valence electronic structure of diamondoid particles in the gas phase, utilizing valence photoelectron spectroscopy. The samples were singly or doubly covalently bonded dimers or trimers of the lower diamondoids. Both the bond type and the combination of bonding partners are shown to affect the overall electronic structure. For singly bonded particles, we observe a small impact of the bond on the electronic structure, whereas for doubly bonded particles, the connecting bond determines the electronic structure of the highest occupied orbitals. In the singly bonded particles a superposition of the bonding partner orbitals determines the overall electronic structure. The experimental findings are supported by density functional theory computations at the M06-2X/cc-pVDZ level of theory.

4.
J Am Chem Soc ; 134(33): 13641-50, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22835264

RESUMO

The metal-induced coupling of tertiary diamondoid bromides gave highly sterically congested hydrocarbon (hetero)dimers with exceptionally long central C-C bonds of up to 1.71 Å in 2-(1-diamantyl)[121]tetramantane. Yet, these dimers are thermally very stable even at temperatures above 200 °C, which is not in line with common C-C bond length versus bond strengths correlations. We suggest that the extraordinary stabilization arises from numerous intramolecular van der Waals attractions between the neighboring H-terminated diamond-like surfaces. The C-C bond rotational dynamics of 1-(1-adamantyl)diamantane, 1-(1-diamantyl)diamantane, 2-(1-adamantyl)triamantane, 2-(1-diamantyl)triamantane, and 2-(1-diamantyl)[121]tetramantane were studied through variable-temperature (1)H- and (13)C NMR spectroscopies. The shapes of the inward (endo) CH surfaces determine the dynamic behavior, changing the central C-C bond rotation barriers from 7 to 33 kcal mol(-1). We probe the ability of popular density functional theory (DFT) approaches (including BLYP, B3LYP, B98, B3LYP-Dn, B97D, B3PW91, BHandHLYP, B3P86, PBE1PBE, wB97XD, and M06-2X) with 6-31G(d,p) and cc-pVDZ basis sets to describe such an unusual bonding situation. Only functionals accounting for dispersion are able to reproduce the experimental geometries, while most DFT functionals are able to reproduce the experimental rotational barriers due to error cancellations. Computations on larger diamondoids reveal that the interplay between the shapes and the sizes of the CH surfaces may even allow the preparation of open-shell alkyl radical dimers (and possibly polymers) that are strongly held together exclusively by dispersion forces.

5.
Nature ; 477(7364): 308-11, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21921913

RESUMO

Steric effects in chemistry are a consequence of the space required to accommodate the atoms and groups within a molecule, and are often thought to be dominated by repulsive forces arising from overlapping electron densities (Pauli repulsion). An appreciation of attractive interactions such as van der Waals forces (which include London dispersion forces) is necessary to understand chemical bonding and reactivity fully. This is evident from, for example, the strongly debated origin of the higher stability of branched alkanes relative to linear alkanes and the possibility of constructing hydrocarbons with extraordinarily long C-C single bonds through steric crowding. Although empirical bond distance/bond strength relationships have been established for C-C bonds (longer C-C bonds have smaller bond dissociation energies), these have no present theoretical basis. Nevertheless, these empirical considerations are fundamental to structural and energetic evaluations in chemistry, as summarized by Pauling as early as 1960 and confirmed more recently. Here we report the preparation of hydrocarbons with extremely long C-C bonds (up to 1.704 Å), the longest such bonds observed so far in alkanes. The prepared compounds are unexpectedly stable--noticeable decomposition occurs only above 200 °C. We prepared the alkanes by coupling nanometre-sized, diamond-like, highly rigid structures known as diamondoids. The extraordinary stability of the coupling products is due to overall attractive dispersion interactions between the intramolecular H•••H contact surfaces, as is evident from density functional theory computations with and without inclusion of dispersion corrections.

6.
Org Lett ; 11(14): 3068-71, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19586063

RESUMO

Oxadiamondoids representing a new class of carbon nanoparticles were prepared from the respective diamondoid ketones via an effective two-step procedure involving addition of methyl magnesium iodide and oxidation with trifluoroperacetic acid in trifluoroacetic acid. The reactivities of the oxacages are determined by the position of the dopant and are in good agreement with computational predictions.

7.
Org Lett ; 9(21): 4379-82, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17887769

RESUMO

The antimalarial drug FR900098 was prepared from diethyl allylphosphonate involving the nitroso-ene reaction with nitrosocarbonyl methane as the key step followed by hydrogenation and dealkylation. The utilization of dibenzyl allylphosphonate as the starting compound allows one-step hydrogenation with dealkylation, which simplifies the preparative scheme further.


Assuntos
Antimaláricos/síntese química , Fosfomicina/análogos & derivados , Compostos Nitrosos/química , Organofosfonatos/química , Antimaláricos/química , Antimaláricos/farmacologia , Fosfomicina/síntese química , Fosfomicina/química , Fosfomicina/farmacologia , Hidrogenação , Estrutura Molecular , Relação Estrutura-Atividade
8.
Chemistry ; 11(23): 7091-101, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16196063

RESUMO

The structures, strain energies, and enthalpies of formation of diamantane 1, triamantane 2, isomeric tetramantanes 3-5, T(d)-pentamantane 6, and D(3d)-hexamantane 7, and the structures of their respective radicals, cations, as well as radical cations, were computed at the B3LYP/6-31G* level of theory. For the most symmetrical hydrocarbons, the relative strain (per carbon atom) decreases from the lower to the higher diamondoids. The relative stabilities of isomeric diamondoidyl radicals vary only within small limits, while the stabilities of the diamondoidyl cations increase with cage size and depend strongly on the geometric position of the charge. Positive charge located close to the geometrical center of the molecule is stabilized by 2-5 kcal mol(-1). In contrast, diamondoid radical cations preferentially form highly delocalized structures with elongated peripheral C-H bonds. The effective spin/charge delocalization lowers the ionization potentials of diamondoids significantly (down to 176.9 kcal mol(-1) for 7). The reactivity of 1 was extensively studied experimentally. Whereas reactions with carbon-centered radicals (Hal)(3)C(*) (Hal=halogen) lead to mixtures of all possible tertiary and secondary halodiamantanes, uncharged electrophiles (dimethyldioxirane, m-chloroperbenzoic acid, and CrO(2)Cl(2)) give much higher tertiary versus secondary selectivities. Medial bridgehead substitution dominates in the reactions with strong electrophiles (Br(2), 100 % HNO(3)), whereas with strong single-electron transfer (SET) acceptors (photoexcited 1,2,4,5-tetracyanobenzene) apical C(4)-H bridgehead substitution is preferred. For diamondoids that form well-defined radical cations (such as 1 and 4-7), exceptionally high selectivities are expected upon oxidation with outer-sphere SET reagents.

10.
J Am Chem Soc ; 124(36): 10718-27, 2002 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12207527

RESUMO

The mechanisms for the reactions of isobutane and adamantane with polyhalogen electrophiles (HHal(2)(+), Hal(3)(+), Hal(5)(+), and Hal(7)(+), Hal = Cl, Br, or I) were studied computationally at the MP2 and B3LYP levels of theory with the 6-31G (C, H, Cl, Br) and 3-21G (I) basis sets, as well as experimentally for adamantane halogenations in Br(2), Br(2)/HBr, and I(+)Cl(-)/CCl(4). The transition structures for the activation step display almost linear C...H...Hal interactions and are characterized by significant charge transfer to the electrophile; the hydrocarbon moieties resemble the respective radical cation structures. The regiospecificities for polar halogenations of the 3-degree C-H bonds of adamantane, the high experimental kinetic isotope effects (k(H)/k(D) = 3-4), the rate accelerations in the presence of Lewis and proton (HBr) acids, and the high kinetic orders for halogen (7.5 for Br(2)) can only be understood in terms of an H-coupled electron-transfer mechanism. The three centered-two electron (3c-2e) electrophilic mechanistic concept based on the attack of the electrophile on a C-H bond does not apply; electrophilic 3c-2e interactions dominate the C-H activations only with nonoxidizing electrophiles such as carbocations. This was shown by a comparative computational analysis of the electrophilic and H-coupled electron-transfer activation mechanisms for the isobutane reaction with an ambident electrophile, the allyl cation, at the above levels of theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...