Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982158

RESUMO

Precisely sensing and guiding cell-state transitions via the conditional genetic activation of appropriate differentiation factors is challenging. Here we show that desired cell-state transitions can be guided via genetically encoded sensors, whereby endogenous cell-state-specific miRNAs regulate the translation of a constitutively transcribed endoribonuclease, which, in turn, controls the translation of a gene of interest. We used this approach to monitor several cell-state transitions, to enrich specific cell types and to automatically guide the multistep differentiation of human induced pluripotent stem cells towards a haematopoietic lineage via endothelial cells as an intermediate state. Such conditional activation of gene expression is durable and resistant to epigenetic silencing and could facilitate the monitoring of cell-state transitions in physiological and pathological conditions and eventually the 'rewiring' of cell-state transitions for applications in organoid-based disease modelling, cellular therapies and regenerative medicine.

2.
Elife ; 92020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142407

RESUMO

How salamanders accomplish progenitor cell proliferation while faithfully maintaining genomic integrity and regenerative potential remains elusive. Here we found an innate DNA damage response mechanism that is evident during blastema proliferation (early- to late-bud) and studied its role during tissue regeneration by ablating the function of one of its components, Eyes absent 2. In eya2 mutant axolotls, we found that DNA damage signaling through the H2AX histone variant was deregulated, especially within the proliferating progenitors during limb regeneration. Ultimately, cell cycle progression was impaired at the G1/S and G2/M transitions and regeneration rate was reduced. Similar data were acquired using acute pharmacological inhibition of the Eya2 phosphatase activity and the DNA damage checkpoint kinases Chk1 and Chk2 in wild-type axolotls. Together, our data indicate that highly-regenerative animals employ a robust DNA damage response pathway which involves regulation of H2AX phosphorylation via Eya2 to facilitate proper cell cycle progression upon injury.


Assuntos
Ambystoma mexicanum/fisiologia , Extremidades/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Regeneração/fisiologia , Animais , Ciclo Celular/fisiologia , Dano ao DNA , Reparo do DNA/fisiologia , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA