Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2211284, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841548

RESUMO

Hybrid metal-halide perovskites (MHPs) have shown remarkable optoelectronic properties as well as facile and cost-effective processability. With the success of MHP solar cells and light-emitting diodes, MHPs have also exhibited great potential as gain media for on-chip lasers. However, to date, stable operation of optically pumped MHP lasers and electrically driven MHP lasers-an essential requirement for MHP laser's insertion into chip-scale photonic integrated circuits-is not yet demonstrated. The main obstacles include the instability of MHPs in the atmosphere, rudimentary MHP laser cavity patterning methods, and insufficient understanding of emission mechanisms in MHP materials and cavities. This review aims to provide a detailed overview of different strategies to improve the intrinsic properties of MHPs in the atmosphere and to establish an optimal MHP cavity patterning method. In addition, this review discusses different emission mechanisms in MHP materials and cavities and how to distinguish them.

2.
ACS Appl Mater Interfaces ; 14(42): 47961-47970, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36218301

RESUMO

In organic solar cells (OSCs), a thick active layer usually yields a higher photocurrent with broader optical absorption than a thin active layer. In fact, a ∼300 nm thick active layer is more compatible with large-area processing methods and theoretically should be a better spot for efficiency optimization. However, the bottleneck of developing high-efficiency thick-film OSCs is the loss in fill factor (FF). The origin of the FF loss is not clearly understood, and there a direct method to identify photoactive materials for high-efficiency thick-film OSCs is lacking. Here, we demonstrate that the mobility field-dependent coefficient is an important parameter directly determining the FF loss in thick-film OSCs. Simulation results based on the drift-diffusion model reveal that a mobility field-dependent coefficient smaller than 10-3 (V/cm)-1/2 is required to maintain a good FF in thick-film devices. To confirm our simulation results, we studied the performance of two ternary bulk heterojunction (BHJ) blends, PTQ10:N3:PC71BM and PM6:N3:PC71BM. We found that the PTQ10 blend film has weaker field-dependent mobilities, giving rise to a more balanced electron-hole transport at low fields. While both the PM6 blend and PTQ10 blend yield good performance in thin-film devices (∼100 nm), only the PTQ10 blend can retain a FF = 74% with an active layer thickness of up to 300 nm. Combining the benefits of a higher JSC in thick-film devices, we achieved a PCE of 16.8% in a 300 nm thick PTQ10:N3:PC71BM OSC. Such a high FF in the thick-film PTQ10 blend is also consistent with the observation of lower charge recombination from light-intensity-dependent measurements and lower energetic disorder observed in photothermal deflection spectroscopy.

3.
Rev Sci Instrum ; 92(10): 104706, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717443

RESUMO

Recent breakthroughs in material development have increased the demand for characterization methods capable of probing nanoscale features on ultrafast time scales. As the sample reduces to atomically thin levels, an extremely low-level signal limits the feasibility of many experiments. Here, we present an affordable and easy-to-implement solution to expand the maximum sensitivity of lock-in detection systems used in transient absorption spectroscopy by multiple orders of magnitude. By implementation of a tuned RC circuit to the output of an avalanche photodiode, electric pulse shaping allows for vastly improved lock-in detection. Furthermore, a carefully designed "peak detector" circuit provides additional pulse shaping benefits, resulting in even more lock-in detection signal enhancement. We demonstrate the improvement of lock-in detection with each of these schemes by performing benchmark measurements of a white-light continuum signal and micro-transient absorption spectroscopy on a few-layer transition metal dichalcogenide sample. Our results show the practicality of ultrafast pump-probe spectroscopy for many high-sensitivity experimental schemes.

4.
Adv Mater ; 32(49): e2005386, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33150672

RESUMO

Organic solar cells (OSCs) based on D18:Y6 have recently exhibited a record power conversion efficiency of over 18%. The initial work is extended and the device performance of D18-based OSCs is compared with three non-fullerene acceptors, Y6, IT-4F, and IEICO-4Cl, and their molecular packing characteristics and miscibility are studied. The D18 polymer shows unusually strong chain extension and excellent backbone ordering in all films, which likely contributes to the excellent hole-transporting properties. Thermodynamic characterization indicates a room-temperature miscibility for D18:Y6 and D18:IT-4F near the percolation threshold. This corresponds to an ideal quench depth and explains the use of solvent vapor annealing rather than thermal annealing. In contrast, D18:IEICO-4Cl is a low-miscibility system with a deep quench depth during casting and poor morphology control and low performance. A failure of ternary blends with PC71 BM is likely due to the near-ideal miscibility of Y6 to begin with and indicates that strategies for developing successful ternary or quaternary solar cells are likely very different for D18 than for other high-performing donors. This work reveals several unique property-performance relations of D18-based photovoltaic devices and helps guide design or fabrication of yet higher efficiency OSCs.

5.
ACS Appl Mater Interfaces ; 12(43): 48845-48853, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33064440

RESUMO

Perovskite light-emitting diodes have been gaining attention in recent years due to their high efficiencies. Despite of the recent progress made in device efficiency, the operation mechanisms of these devices are still not well understood, especially the effects of ion migration. In this work, the role of ion migration is investigated by measuring the transient electroluminescence and current responses, with both the current and efficiency showing a slow response in a time scale of tens of milliseconds. The results of the charge injection dynamics show that the slow response of the current is attributed to the migration and accumulation of halide ions at the anode interface, facilitating hole injection and leading to a strong charge imbalance. Further, the results of the charge recombination dynamics show that the slow response of the efficiency is attributed to enhanced charge injection facilitated by ion migration, which leads to an increased carrier density favoring bimolecular radiative recombination. Through a combined analysis of both charge injection and recombination dynamics, we finally present a comprehensive picture of the role of ion migration in device operation.

6.
ACS Appl Mater Interfaces ; 12(28): 31667-31676, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538607

RESUMO

A typical top-emitting organic light-emitting diode (OLED) has a strong microcavity effect because of the two reflective electrodes. The cavity effect causes a serious color shift with the viewing angles and restricts the organic layer thickness. To overcome these drawbacks, we design a multi-mode OLED structure with dual-dielectric spacer layers, which extend the cavity length by more than 10 times. This design completely eliminates the intrinsic cavity effect caused by the top and bottom boundaries and provides freedom for the organic layer thickness. We demonstrate these effects in a white multi-mode OLED using a white emitter, which shows a negligible angular chromaticity shift of Δuv = 0.006 from 0 to 70° and a Lambertian emission profile. The simple design and the perfect angular color profiles make the multi-mode OLED structure promising in large-area displays and solid-state lighting applications.

7.
Adv Mater ; 32(16): e1906571, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32108964

RESUMO

Quasi-2D Ruddlesden-Popper halide perovskites with a large exciton binding energy, self-assembled quantum wells, and high quantum yield draw attention for optoelectronic device applications. Thin films of these quasi-2D perovskites consist of a mixture of domains having different dimensionality, allowing energy funneling from lower-dimensional nanosheets (high-bandgap domains) to 3D nanocrystals (low-bandgap domains). High-quality quasi-2D perovskite (PEA)2 (FA)3 Pb4 Br13 films are fabricated by solution engineering. Grazing-incidence wide-angle X-ray scattering measurements are conducted to study the crystal orientation, and transient absorption spectroscopy measurements are conducted to study the charge-carrier dynamics. These data show that highly oriented 2D crystal films have a faster energy transfer from the high-bandgap domains to the low-bandgap domains (<0.5 ps) compared to the randomly oriented films. High-performance light-emitting diodes can be realized with these highly oriented 2D films. Finally, amplified spontaneous emission with a low threshold 4.16 µJ cm-2 is achieved and distributed feedback lasers are also demonstrated. These results show that it is important to control the morphology of the quasi-2D films to achieve efficient energy transfer, which is a critical requirement for light-emitting devices.

8.
ACS Nano ; 13(9): 10351-10358, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31483608

RESUMO

Excitons in semiconductors are usually noninteracting and behave like an ideal gas, but may condense to a strongly correlated liquid-like state, i.e., electron-hole liquid (EHL), at high density and appropriate temperature. An EHL is a macroscopic quantum state with exotic properties and represents the ultimate attainable charge excitation density in steady states. It bears great promise for a variety of fields such as ultra-high-power photonics and quantum science and technology. However, the condensation of gas-like excitons to an EHL has often been restricted to cryogenic temperatures, which significantly limits the prospect of EHLs for use in practical applications. Herein we demonstrate the formation of an EHL at room temperature in monolayer MoS2 by taking advantage of the monolayer's extraordinarily strong exciton binding energy. This work demonstrates the potential for the liquid-like state of charge excitations to be a useful platform for the studies of macroscopic quantum phenomena and the development of optoelectronic devices.

9.
ACS Appl Mater Interfaces ; 11(41): 38240-38246, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31502823

RESUMO

Atomically thin (1L)-MoS2 emerged as a direct band gap semiconductor with potential optical applications. The photoluminescence (PL) of 1L-MoS2 degrades due to aging-related defect formation. The passivation of these defects leads to substantial improvement in optical properties. Here, we report the enhancement of PL on aged 1L-MoS2 by laser treatment. Using photoluminescence and Raman spectroscopy in a gas-controlled environment, we show that the enhancement is associated with efficient adsorption of oxygen on existing sulfur vacancies preceded by removal of adsorbates from the sample's surface. Oxygen adsorption depletes negative charges, resulting in suppression of trions and improved neutral exciton recombination. The result is a 6- to 8-fold increase in PL emission. The laser treatment in this work does not cause any measurable damage to the sample as verified by Raman spectroscopy, which is important for practical applications. Surprisingly, the observed PL enhancement is reversible by both vacuum and ultrafast femtosecond excitation. While the former approach allows switching a designed micropattern on the sample ON and OFF, the latter provides a controllable mean for accurate PL tuning, which is highly desirable for optoelectronic and gas sensing applications.

11.
J Am Chem Soc ; 141(19): 7955-7964, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31017429

RESUMO

Three-dimensional (3D) hybrid organic-inorganic lead halide perovskites (HOIPs) feature remarkable optoelectronic properties for solar energy conversion but suffer from long-standing issues of environmental stability and lead toxicity. Associated two-dimensional (2D) analogues are garnering increasing interest due to superior chemical stability, structural diversity, and broader property tunability. Toward lead-free 2D HOIPs, double perovskites (DPs) with mixed-valent dual metals are attractive. Translation of mixed-metal DPs to iodides, with their prospectively lower bandgaps, represents an important target for semiconducting halide perovskites, but has so far proven inaccessible using traditional spacer cations due to either intrinsic instability or formation of competing non-perovskite phases. Here, we demonstrate the first example of a 2D Ag-Bi iodide DP with a direct bandgap of 2.00(2) eV, templated by a layer of bifunctionalized oligothiophene cations, i.e., (bis-aminoethyl)bithiophene, through a collective influence of aromatic interactions, hydrogen bonding, bidentate tethering, and structural rigidity. Hybrid density functional theory calculations for the new material reveal a direct bandgap, consistent with the experimental value, and relatively flat band edges derived principally from Ag-d/I-p (valence band) and Bi-p/I-p (conduction band) states. This work opens up new avenues for exploring specifically designed organic cations to stabilize otherwise inaccessible 2D HOIPs with potential applications for optoelectronics.

12.
Nano Lett ; 19(2): 1104-1111, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608697

RESUMO

Many-body interactions in photoexcited semiconductors can bring about strongly interacting electronic states, culminating in the fully ionized matter of electron-hole plasma (EHP) and electron-hole liquid (EHL). These exotic phases exhibit unique electronic properties, such as metallic conductivity and metastable high photoexcitation density, which can be the basis for future transformative applications. However, the cryogenic condition required for its formation has limited the study of dense plasma phases to a purely academic pursuit in a restricted parameter space. This paradigm can potentially change with the recent experimental observation of these phases in atomically thin MoS2 and MoTe2 at room temperature. A fundamental understanding of EHP and EHL dynamics is critical for developing novel applications on this versatile layered platform. In this work, we studied the formation and dissipation of EHP in monolayer MoS2. Unlike previous results in bulk semiconductors, our results reveal that electromechanical material changes in monolayer MoS2 during photoexcitation play a significant role in dense EHP formation. Within the free-standing geometry, photoexcitation is accompanied by an unconstrained thermal expansion, resulting in a direct-to-indirect gap electronic transition at a critical lattice spacing and fluence. This dramatic altering of the material's energetic landscape extends carrier lifetimes by 2 orders of magnitude and allows the density required for EHP formation. The result is a stable dense plasma state that is sustained with modest optical photoexcitation. Our findings pave the way for novel applications based on dense plasma states in two-dimensional semiconductors.

13.
Adv Mater ; 30(30): e1801392, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29893011

RESUMO

Interfaces between donor and acceptor in a polymer solar cell play a crucial role in exciton dissociation and charge photogeneration. While the importance of charge transfer (CT) excitons for free carrier generation is intensively studied, the effect of blending on the nature of the polymer excitons in relation to the blend nanomorphology remains largely unexplored. In this work, electroabsorption (EA) spectroscopy is used to study the excited-state polarizability of polymer excitons in several polymer:fullerene blend systems, and it is found that excited-state polarizability of polymer excitons in the blends is a strong function of blend nanomorphology. The increase in excited-state polarizability with decreased domain size indicates that intermixing of states at the interface between the donor polymers and fullerene increases the exciton delocalization, resulting in an increase in exciton dissociation efficiency. This conclusion is further supported by transient absorption spectroscopy and time-resolved photoluminescence measurements, along with the results from time-dependent density functional theory calculations. These findings indicate that polymer excited-state polarizability is a key parameter for efficient free carrier generation and should be considered in the design and development of high-performance polymer solar cells.

14.
J Phys Chem A ; 122(15): 3764-3771, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29613800

RESUMO

Non-fullerene acceptors (NFAs) have been demonstrated to be promising candidates for highly efficient organic photovoltaic (OPV) devices. The tunability of absorption characteristics of NFAs can be used to make OPVs with complementary donor-acceptor absorption to cover a broad range of the solar spectrum. However, both charge transfer from donor to acceptor moieties and energy (energy) transfer from high-bandgap to low-bandgap materials are possible in such structures. Here, we show that when charge transfer and exciton transfer processes are both present, the coexistence of excitons in both domains can cause a loss mechanism. Charge separation of excitons in a low-bandgap material is hindered due to exciton population in the larger bandgap acceptor domains. Our results further show that excitons in low-bandgap material should have a relatively long lifetime compared to the transfer time of excitons from higher bandgap material in order to contribute to the charge separation. These observations provide significant guidance for design and development of new materials in OPV applications.

15.
Nano Lett ; 17(10): 6056-6061, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28873308

RESUMO

We perform the transient absorption spectroscopy experiments to investigate the dynamics of the low-energy collective electron-hole excitations in α-copper phthalocyanine thin films. The results are interpreted in terms of the third-order nonlinear polarization response function. It is found that, initially excited in the molecular plane, the intramolecular Frenkel exciton polarization reorients with time to align along the molecular chain direction to form coupled Frenkel-charge-transfer exciton states, the eigenstates of the one-dimensional periodic molecular lattice. The process pinpoints the direction of the charge separation in α-copper phthalocyanine and similar organic molecular structures. Being able to observe and monitor such processes is important both for understanding the physical principles of organic thin film solar energy conversion device operation and for the development of organic optoelectronics in general.

16.
ACS Nano ; 11(9): 9390-9396, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28850781

RESUMO

We have demonstrated that multiple functionalities of transition-metal dichalcogenide (TMDC) monolayers may be substantially improved by the intercalation of small cations (H+ or Li+) between the monolayers and underlying substrates. The functionalities include photoluminescence (PL) efficiency and catalytic activity. The improvement in PL efficiency may be up to orders of magnitude and can be mainly ascribed to two effects of the intercalated cations: p-doping to the monolayers and reducing the influence of substrates, but more studies are necessary to better understand the mechanism for the improvement in the catalytic functionality. The cation intercalation may be achieved by simply immersing substrate-supported monolayers into the solution of certain acids or salts. It is more difficult to intercalate under the monolayers interacting with substrates stronger, such as as-grown monolayers or the monolayers on 2D material substrates. This result presents a versatile strategy to simultaneously optimize multiple functionalities of TMDC monolayers.

17.
Adv Mater ; 29(9)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28009459

RESUMO

Triplet excitons form in quasi-2D hybrid inorganic-organic perovskites and diffuse over 100 nm before radiating with >11% photoluminescence quantum efficiency (PLQE) at low temperatures.

18.
Adv Mater ; 29(5)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27893177

RESUMO

Fullerene-free organic solar cells show over 11% power conversion efficiency, processed by low toxic solvents. The applied donor and acceptor in the bulk heterojunction exhibit almost the same highest occupied molecular orbital level, yet exhibit very efficient charge creation.

19.
Adv Sci (Weinh) ; 3(9): 1500353, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27711265

RESUMO

A polymer/PCBM hybrid electron transport layer is reported that enables high-performance perovskite solar cells with a high power conversion efficiency of 16.2% and with negligible hysteresis. Unlike previous approaches of reducing hysteresis by thermal annealing or fullerene passivation, the success of our approach can be mainly attributed to the doping of the PCBM layer using an insulating polymer (polystyrene) and an amine-containing polymeric semiconductor named PFNOX.

20.
ACS Appl Mater Interfaces ; 7(50): 27586-91, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26630116

RESUMO

All-polymer solar cells exhibit rapid progress in power conversion efficiency (PCE) from 2 to 7.7% over the past few years. While this improvement is primarily attributed to efficient charge transport and balanced mobility between the carriers, not much is known about the charge generation dynamics in these systems. Here we measured exciton relaxation and charge separation dynamics using ultrafast spectroscopy in polymer/polymer blends with different molecular packing and morphology. These measurements indicate that preferential face-on configuration with intermixed nanomorphology increases the charge generation efficiency. In fact, there is a direct quantitative correlation between the free charge population in the ultrafast time scales and the external quantum efficiency, suggesting not only the transport but also charge generation is key for the design of high performance all polymer solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...