Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38746209

RESUMO

Our study focuses on the intricate connection between tissue-level organization and ciliated organ function in humans, particularly in understanding the morphological organization of airways and their role in mucociliary clearance. Mucociliary clearance is a key mechanical defense mechanism of human airways, and clearance failure is associated with many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. While single-cell transcriptomics have unveiled the cellular complexity of the human airway epithelium, our understanding of the mechanics that link epithelial structure to clearance function mainly stem from animal models. This reliance on animal data limits crucial insights into human airway barrier function and hampers the human-relevant in vitro modeling of airway diseases. This study, for the first time, maps the distribution of ciliated and secretory cell types along the airway tree in both rats and humans, noting species-specific differences in ciliary function and elucidates structural parameters of airway epithelia that predict clearance function in both native and in vitro tissues alike. By uncovering how tissue organization influences ciliary function, we can better understand disruptions in mucociliary clearance, which could have implications for various ciliated organs beyond the airways.

2.
bioRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38187619

RESUMO

Mucociliary clearance is a key mechanical defense mechanism of human airways, and clearance failure is linked to major respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. While single-cell transcriptomics have unveiled the cellular complexity of the human airway epithelium, our understanding of the mechanics that link epithelial structure to clearance function mainly stem from animal models. This reliance on animal data limits crucial insights into human airway barrier function and hampers the human-relevant in vitro modeling of airway diseases. Our study fills this crucial knowledge gap and for the first time (1) maps the distribution of ciliated and secretory cell types on the mucosal surface along the proximo-distal axis of the rat and human airway tree, (2) identifies species-specific differences in ciliary beat and clearance function, and (3) elucidates structural parameters of airway epithelia that predict clearance function in both native and in vitro tissues alike. Our broad range of experimental approaches and physics-based modeling translate into generalizable parameters to quantitatively benchmark the human-relevancy of mucociliary clearance in experimental models, and to characterize distinct disease states.

3.
iScience ; 24(9): 103061, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34585112

RESUMO

Complex human airway cellular organization where extracellular matrix (ECM) and epithelial and stromal lineages interact present challenges for organ study in vitro. Current in vitro lung models that focus on the lung epithelium do not represent complex airway morphology and cell-ECM interactions seen in vivo. Models including stromal populations often separate them via a semipermeable barrier precluding cell-cell interaction or the effect of ECM mechanics. We investigated the effect of stromal cells on basal epithelial cell-derived bronchosphere structure and function through a triple culture of human bronchial epithelial, lung fibroblast, and airway smooth muscle cells. Epithelial-stromal cross-talk resulted in epithelial cell-driven branching tubules with stromal cells surrounding epithelial cells termed bronchotubules. Agarose- Matrigel scaffold (Agrigel) formed a mechanically tuneable ECM, with adjustable viscoelasticity and stiffness enabling long-term tubule survival. Bronchotubule models may enable research into how epithelial-stromal cell and cell-ECM communication drive tissue patterning, repair, and development of disease.

4.
ACS Appl Mater Interfaces ; 11(31): 27503-27511, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31291088

RESUMO

Poly(ether ether ketone) (PEEK) is a promising material in biomedical engineering due to its suitable mechanical properties and excellent chemical resistance and biocompatibility. However, the biological inertness of PEEK limits its applications. In this study, we developed a facile approach of immersion to generate a biocompatible and bioactive PEEK that induced osteodifferentiation. First, micropores on the surface of PEEK were introduced by concentrated sulfuric acid and subsequent water immersion, followed by the hydrothermal treatment to reduce residual sulfuric acid. Subsequently, the sulfonated PEEK surface was activated by the oxygen plasma treatment and then coated with a poly(dopamine) (PDA) layer by immersion into the dopamine solution. Finally, the tripeptide Arg-Gly-Asp (RGD) was integrated onto the PDA-coated surface of PEEK by immersion into the RGD peptide solution. The surface characteristics (physical chemistry and biological properties) and the ability to form bonelike apatite were systematically investigated by scanning electron microscopy, X-ray photoelectron spectroscopy, water contact angle analysis, the Archimedes' fluid saturation method, ellipsometry, a quartz crystal microbalance with dissipation monitoring, cell proliferation, real-time reverse transcription polymerase chain reaction analysis, alizarin red staining, immunocytochemistry staining, and simulated body fluid immersion. Collectively, the modified PEEK showed a significantly improved ability to promote cell proliferation, osteogenic differentiation, and bonelike apatite formation in vitro as compared to the PEEK control. These results demonstrate that combined facile surface modifications for PEEK enhance its bioactivity and biocompatibility, and induce osteodifferentiation. This study presents a strategy for broadening the use of PEEK in the application of orthopedic implants and could be industrially scalable in future.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Cetonas , Oligopeptídeos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Polietilenoglicóis , Animais , Benzofenonas , Linhagem Celular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Cetonas/química , Cetonas/farmacologia , Camundongos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Osteoblastos/citologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polímeros , Propriedades de Superfície
5.
Oncotarget ; 6(31): 31593-603, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26267317

RESUMO

Platinum based drugs are the cornerstone of chemotherapy for ovarian cancer, however the development of chemoresistance hinders its success. IL-8 is involved in regulating several pro-survival pathways in cancer. We studied the expression of IL-8 and IL-8 receptors in platinum sensitive and resistant cell lines. Using qRT-PCR and immunohistochemistry, both platinum sensitive (PEA1, PEO14) and resistant (PEA2, PEO23) show increased expression of IL-8 and IL-8 receptors. IL-8RA shows nuclear and cytoplasmic expression, whilst IL-8RB is present solely in the cytoplasm. Knockdown of IL-8 increased sensitivity to cisplatin in platinum sensitive and reversed platinum resistance in resistant cell lines, decreased the expression of anti-apoptotic Bcl-2 and decreased inhibitory phosphorylation of pro-apoptotic Bad. IL-8 receptor antagonist treatment also enhanced platinum sensitivity. Nuclear localisation of IL-8RA was only detected in platinum resistant tumours. Inhibition of IL-8 signalling can enhance response in platinum sensitive and resistant disease. Nuclear IL-8RA may have potential as a biomarker of resistant disease.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Interleucina-8/metabolismo , Neoplasias Císticas, Mucinosas e Serosas/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Interleucina-8/genética , Gradação de Tumores , Neoplasias Císticas, Mucinosas e Serosas/genética , Neoplasias Císticas, Mucinosas e Serosas/metabolismo , Neoplasias Císticas, Mucinosas e Serosas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Proteína de Morte Celular Associada a bcl/metabolismo
6.
Cancer Res ; 71(13): 4412-22, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21571862

RESUMO

Ovarian cancer frequently acquires resistance to platinum chemotherapy, representing a major challenge for improving patient survival. Recent work suggests that resistant clones exist within a larger drug-sensitive cell population prior to chemotherapy, implying that resistance is selected for rather than generated by treatment. We sought to compare clinically derived, intrapatient paired models of initial platinum response and subsequent resistant relapse to define molecular determinants of evolved resistance. Transcriptional analysis of a matched cell line series from three patients with high-grade serous ovarian cancer before and after development of clinical platinum resistance (PEO1/PEO4/PEO6, PEA1/PEA2, PEO14/PEO23) identified 91 up- and 126 downregulated genes common to acquired resistance. Significantly enhanced apoptotic response to platinum treatment in resistant cells was observed following knockdown of histone deacetylase (HDAC) 4, FOLR2, PIK3R1, or STAT1 (P < 0.05). Interestingly, HDAC4 and STAT1 were found to physically interact. Acetyl-STAT1 was detected in platinum-sensitive cells but not in HDAC4 overexpressing platinum-resistant cells from the same patient. In resistant cells, STAT1 phosphorylation/nuclear translocation was seen following platinum exposure, whereas silencing of HDAC4 increased acetyl-STAT1 levels, prevented platinum-induced STAT1 activation, and restored cisplatin sensitivity. Conversely, matched sensitive cells were refractory to STAT1 phosphorylation on platinum treatment. Analysis of 16 paired tumor biopsies taken before and after development of clinical platinum resistance showed significantly increased HDAC4 expression in resistant tumors [n = 7 of 16 (44%); P = 0.04]. Therefore, clinical selection of HDAC4-overexpressing tumor cells upon exposure to chemotherapy promotes STAT1 deacetylation and cancer cell survival. Together, our findings identify HDAC4 as a novel, therapeutically tractable target to counter platinum resistance in ovarian cancer.


Assuntos
Cisplatino/farmacologia , Histona Desacetilases/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição STAT1/metabolismo , Acetilação , Animais , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes BRCA1 , Genes BRCA2 , Histona Desacetilases/genética , Humanos , Neoplasias Ovarianas/genética , Fosforilação , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...