Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 23(3): 406-413, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168807

RESUMO

Nanostructured composite electrode materials play a major role in the fields of catalysis and electrochemistry. The self-assembly of metallic nanoparticles on oxide supports via metal exsolution relies on the transport of reducible dopants towards the perovskite surface to provide accessible catalytic centres at the solid-gas interface. At surfaces and interfaces, however, strong electrostatic gradients and space charges typically control the properties of oxides. Here we reveal that the nature of the surface-dopant interaction is the main determining factor for the exsolution kinetics of nickel in SrTi0.9Nb0.05Ni0.05O3-δ. The electrostatic interaction of dopants with surface space charge regions forming upon thermal oxidation results in strong surface passivation, which manifests in a retarded exsolution response. We furthermore demonstrate the controllability of the exsolution response via engineering of the perovskite surface chemistry. Our findings indicate that tailoring the electrostatic gradients at the perovskite surface is an essential step to improve exsolution-type materials in catalytic converters.

2.
Nat Commun ; 14(1): 8284, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092726

RESUMO

Electrocatalysts are the cornerstone in the transition to sustainable energy technologies and chemical processes. Surface transformations under operation conditions dictate the activity and stability. However, the dependence of the surface structure and transformation on the exposed crystallographic facet remains elusive, impeding rational catalyst design. We investigate the (001), (110) and (111) facets of a LaNiO3-δ electrocatalyst for water oxidation using electrochemical measurements, X-ray spectroscopy, and density functional theory calculations with a Hubbard U term. We reveal that the (111) overpotential is ≈ 30-60 mV lower than for the other facets. While a surface transformation into oxyhydroxide-like NiOO(H) may occur for all three orientations, it is more pronounced for (111). A structural mismatch of the transformed layer with the underlying perovskite for (001) and (110) influences the ratio of Ni2+ and Ni3+ to Ni4+ sites during the reaction and thereby the binding energy of reaction intermediates, resulting in the distinct catalytic activities of the transformed facets.

3.
ACS Nano ; 17(6): 5329-5339, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36913300

RESUMO

High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-δ with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono- or bimetallic oxides.

4.
J Am Chem Soc ; 144(39): 17966-17979, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36130265

RESUMO

The stability of perovskite oxide catalysts for the oxygen evolution reaction (OER) plays a critical role in their applicability in water splitting concepts. Decomposition of perovskite oxides under applied potential is typically linked to cation leaching and amorphization of the material. However, structural changes and phase transformations at the catalyst surface were also shown to govern the activity of several perovskite electrocatalysts under applied potential. Hence, it is crucial for the rational design of durable perovskite catalysts to understand the interplay between the formation of active surface phases and stability limitations under OER conditions. In the present study, we reveal a surface-dominated activation and deactivation mechanism of the prominent electrocatalyst La0.6Sr0.4CoO3-δ under steady-state OER conditions. Using a multiscale microscopy and spectroscopy approach, we identify the evolving Co-oxyhydroxide as catalytically active surface species and La-hydroxide as inactive species involved in the transient degradation behavior of the catalyst. While the leaching of Sr results in the formation of mixed surface phases, which can be considered as a part of the active surface, the gradual depletion of Co from a self-assembled active CoO(OH) phase and the relative enrichment of passivating La(OH)3 at the electrode surface result in the failure of the perovskite catalyst under applied potential.

5.
Front Chem ; 10: 913419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35815219

RESUMO

The oxygen evolution reaction (OER) is one of the key kinetically limiting half reactions in electrochemical energy conversion. Model epitaxial catalysts have emerged as a platform to identify structure-function-relationships at the atomic level, a prerequisite to establish advanced catalyst design rules. Previous work identified an inverse relationship between activity and the stability of noble metal and oxide OER catalysts in both acidic and alkaline environments: The most active catalysts for the anodic OER are chemically unstable under reaction conditions leading to fast catalyst dissolution or amorphization, while the most stable catalysts lack sufficient activity. In this perspective, we discuss the role that epitaxial catalysts play in identifying this activity-stability-dilemma and introduce examples of how they can help overcome it. After a brief review of previously observed activity-stability-relationships, we will investigate the dependence of both activity and stability as a function of crystal facet. Our experiments reveal that the inverse relationship is not universal and does not hold for all perovskite oxides in the same manner. In fact, we find that facet-controlled epitaxial La0.6Sr0.4CoO3-δ catalysts follow the inverse relationship, while for LaNiO3-δ, the (111) facet is both the most active and the most stable. In addition, we show that both activity and stability can be enhanced simultaneously by moving from La-rich to Ni-rich termination layers. These examples show that the previously observed inverse activity-stability-relationship can be overcome for select materials and through careful control of the atomic arrangement at the solid-liquid interface. This realization re-opens the search for active and stable catalysts for water electrolysis that are made from earth-abundant elements. At the same time, these results showcase that additional stabilization via material design strategies will be required to induce a general departure from inverse stability-activity relationships among the transition metal oxide catalysts to ultimately grant access to the full range of available oxides for OER catalysis.

6.
Faraday Discuss ; 236(0): 141-156, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35543196

RESUMO

Nanoparticle formation by dopant exsolution (migration) from bulk host lattices is a promising approach to generate highly stable nanoparticles with tunable size, shape, and distribution. We investigated Ni dopant migration from strontium titanate (STO) lattices, forming metallic Ni nanoparticles at STO surfaces. Ex situ scanning probe measurements confirmed the presence of nanoparticles at the H2 treated surface. In situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) revealed reduction from Ni2+ to Ni0 as Ni dopants migrated to the surface during heating treatments in H2. During Ni migration and reduction, the Sr and Ti chemical states were mostly unchanged, indicating the selective reduction of Ni during treatment. At the same time, we used in situ ambient pressure grazing incidence X-ray scattering (GIXS) to monitor the particle morphology. As Ni migrated to the surface, it nucleated and grew into compressed spheroidal nanoparticles partially embedded in the STO perovskite surface. These findings provide a detailed picture of the evolution of the nanoparticle surface and subsurface chemical state and morphology as the nanoparticles grow beyond the initial nucleation and growth stages.

7.
ACS Appl Mater Interfaces ; 14(12): 14129-14136, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35293734

RESUMO

The Co-O covalency in perovskite oxide cobaltites such as La1-xSrxCoO3 is believed to impact the electrocatalytic activity during electrochemical water splitting at the anode where the oxygen evolution reaction (OER) takes place. Additionally, space charge layers through band bending at the interface to the electrolyte may affect the electron transfer into the electrode, complicating the analysis and identification of true OER activity descriptors. Here, we separate the influence of covalency and band bending in hybrid epitaxial bilayer structures of highly OER-active La0.6Sr0.4CoO3 and undoped and less-active LaCoO3. Ultrathin LaCoO3 capping layers of 2-8 unit cells on La0.6Sr0.4CoO3 show intermediate OER activity between La0.6Sr0.4CoO3 and LaCoO3 evidently caused by the increased surface Co-O covalency compared to single LaCoO3 as detected by X-ray photoelectron spectroscopy. A Mott-Schottkyanalysis revealed low flat band potentials for different LaCoO3 capping layer thicknesses, indicating that no limiting extended space charge layer exists under OER conditions as all catalyst bilayer films exhibited hole accumulation at the surface. The combined X-ray photoelectron spectroscopy and Mott-Schottky analysis thus enables us to differentiate between the influence of the covalency and intrinsic space charge layers, which are indistinguishable in a single physical or electrochemical characterization. Our results emphasize the prominent role of transition metal oxygen covalency in perovskite electrocatalysts and introduce a bilayer approach to fine-tune the surface electronic structure.

8.
Small ; 17(51): e2104356, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34791798

RESUMO

Oxygen diffusivity and surface exchange kinetics underpin the ionic, electronic, and catalytic functionalities of complex multivalent oxides. Towards understanding and controlling the kinetics of oxygen transport in emerging technologies, it is highly desirable to reveal the underlying lattice dynamics and ionic activities related to oxygen variation. In this study, the evolution of oxygen content is identified in real-time during the progress of a topotactic phase transition in La0.7 Sr0.3 MnO3-δ epitaxial thin films, both at the surface and throughout the bulk. Using polarized neutron reflectometry, a quantitative depth profile of the oxygen content gradient is achieved, which, alongside atomic-resolution scanning transmission electron microscopy, uniquely reveals the formation of a novel structural phase near the surface. Surface-sensitive X-ray spectroscopies further confirm a significant change of the electronic structure accompanying the transition. The anisotropic features of this novel phase enable a distinct oxygen diffusion pathway in contrast to conventional observation of oxygen motion at moderate temperatures. The results provide insights furthering the design of solid oxygen ion conductors within the framework of topotactic phase transitions.

9.
ACS Nano ; 15(3): 4546-4560, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33635643

RESUMO

Exsolution phenomena are highly debated as efficient synthesis routes for nanostructured composite electrode materials for the application in solid oxide cells (SOCs) and the development of next-generation electrochemical devices for energy conversion. Utilizing the instability of perovskite oxides, doped with electrocatalytically active elements, highly dispersed nanoparticles can be prepared at the perovskite surface under the influence of a reducing heat treatment. For the systematic study of the mechanistic processes governing metal exsolution, epitaxial SrTi0.9Nb0.05Ni0.05O3-δ thin films of well-defined stoichiometry are synthesized and employed as model systems to investigate the interplay of defect structures and exsolution behavior. Spontaneous phase separation and the formation of dopant-rich features in the as-synthesized thin film material is revealed by high-resolution transmission electron microscopy (HR-TEM) investigations. The resulting nanostructures are enriched by nickel and serve as preformed nuclei for the subsequent exsolution process under reducing conditions, which reflects a so far unconsidered process drastically affecting the understanding of nanoparticle exsolution phenomena. Using an approach of combined morphological, chemical, and structural analysis of the exsolution response, a limitation of the exsolution dynamics for nonstoichiometric thin films is found to be correlated to a distortion of the perovskite host lattice. Consequently, the incorporation of defect structures results in a reduced particle density at the perovskite surface, presumably by trapping of nanoparticles in the oxide bulk.

10.
Nat Mater ; 20(5): 674-682, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33432142

RESUMO

Structure-activity relationships built on descriptors of bulk and bulk-terminated surfaces are the basis for the rational design of electrocatalysts. However, electrochemically driven surface transformations complicate the identification of such descriptors. Here we demonstrate how the as-prepared surface composition of (001)-terminated LaNiO3 epitaxial thin films dictates the surface transformation and the electrocatalytic activity for the oxygen evolution reaction. Specifically, the Ni termination (in the as-prepared state) is considerably more active than the La termination, with overpotential differences of up to 150 mV. A combined electrochemical, spectroscopic and density-functional theory investigation suggests that this activity trend originates from a thermodynamically stable, disordered NiO2 surface layer that forms during the operation of Ni-terminated surfaces, which is kinetically inaccessible when starting with a La termination. Our work thus demonstrates the tunability of surface transformation pathways by modifying a single atomic layer at the surface and that active surface phases only develop for select as-synthesized surface terminations.

11.
Adv Mater ; 33(4): e2004132, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33263190

RESUMO

The ability to tailor oxide heterointerfaces has led to novel properties in low-dimensional oxide systems. A fundamental understanding of these properties is based on the concept of electronic charge transfer. However, the electronic properties of oxide heterointerfaces crucially depend on their ionic constitution and defect structure: ionic charges contribute to charge transfer and screening at oxide interfaces, triggering a thermodynamic balance of ionic and electronic structures. Quantitative understanding of the electronic and ionic roles regarding charge-transfer phenomena poses a central challenge. Here, the electronic and ionic structure is simultaneously investigated at the prototypical charge-transfer heterointerface, LaAlO3 /SrTiO3 . Applying in situ photoemission spectroscopy under oxygen ambient, ionic and electronic charge transfer is deconvoluted in response to the oxygen atmosphere at elevated temperatures. In this way, both the rich and variable chemistry of complex oxides and the associated electronic properties are equally embraced. The interfacial electron gas is depleted through an ionic rearrangement in the strontium cation sublattice when oxygen is applied, resulting in an inverse and reversible balance between cation vacancies and electrons, while the mobility of ionic species is found to be considerably enhanced as compared to the bulk. Triggered by these ionic phenomena, the electronic transport and magnetic signature of the heterointerface are significantly altered.

12.
ACS Omega ; 5(11): 5824-5833, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32226862

RESUMO

SrRuO3, a 4d ferromagnet with multiple Weyl nodes at the Fermi level, offers a rich playground to design epitaxial heterostructures and superlattices with fascinating magnetic and magnetotransport properties. Interfacing ultrathin SrRuO3 layers with large spin-orbit coupling 5d transition-metal oxides, such as SrIrO3, results in pronounced peaklike anomalies in the magnetic field dependence of the Hall resistivity. Such anomalies have been attributed either to the formation of Néel-type skyrmions or to modifications of the Berry curvature of the topologically nontrivial conduction bands near the Fermi level of SrRuO3. Here, epitaxial multilayers based on SrRuO3 interfaced with 5d perovskite oxides, such as SrIrO3 and SrHfO3, were studied. This work focuses on the magnetotransport properties of the multilayers, aiming to unravel the role played by the interfaces with 5d perovskites in the peaklike anomalies of the Hall resistance loops of SrRuO3 layers. Interfacing with large band gap insulating SrHfO3 layers did not influence the anomalous Hall resistance loops, while interfacing with the nominally paramagnetic semimetal SrIrO3 resulted in pronounced peaklike anomalies, which have been lately attributed to a topological Hall effect contribution as a result of skyrmions. This interpretation is, however, under strong debate and lately alternative causes, such as inhomogeneity of the thickness and the electronic properties of the SrRuO3 layers, have been considered. Aligned with these latter proposals, our findings reveal the central role played in the anomalies of the Hall resistivity loops by electronic inhomogeneity of SrRuO3 layers due to the interfacing with semimetallic 5d5 SrIrO3.

13.
ACS Appl Mater Interfaces ; 9(12): 10888-10896, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28262026

RESUMO

Electron mobility is one of the most-debated key attributes of low-dimensional electron systems emerging at complex oxide heterointerfaces. However, a common understanding of how electron mobility can be optimized in these systems has not been achieved so far. Here, we discuss a novel approach for achieving a systematic increase in electron mobility in polar/nonpolar perovskite interfaces by suppressing the thermodynamically required defect formation at the nanoscale. We discuss the transport properties of electron gases established at interfaces between SrTiO3 and various polar perovskites [LaAlO3, NdGaO3, and (La,Sr)(Al,Ta)O3], allowing for the individual variation of epitaxial strain and charge transfer among these epitaxial interfaces. As we show, the reduced charge transfer at (La,Sr)(Al,Ta)O3/SrTiO3 interfaces yields a systematic increase in electron mobility, while the reduced epitaxial strain has only minor impact. As thermodynamic continuum simulations suggest, the charge transfer across these interfaces affects both the spatial distribution of electrons and the background distribution of ionic defects, acting as major scatter centers within the potential well. Easing charge transfer in (La,Sr)(Al,Ta)O3/SrTiO3 yields an enlarged spatial separation of mobile charge carriers and scattering centers, as well as a reduced driving force for the formation of ionic defects at the nanoscale. Our results suggest a general recipe for achieving electron enhancements at oxide heterostructure interfaces and provide new perspectives for atomistic understanding of electron scattering in these systems.

14.
Sci Rep ; 7: 39953, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28091517

RESUMO

The reduction of oxides during annealing and growth in low pressure processes is a widely known problem. We hence investigate the influence of mere annealing and of growth in vacuum systems to shed light on the reasons behind the reduction of perovskites. When comparing the existing literature regarding the reduction of the perovskite model material SrTiO3 it is conspicuous that one finds different oxygen pressures required to achieve reduction for vacuum annealing and for chemically controlled reducing atmospheres. The unraveling of this discrepancy is of high interest for low pressure physical vapor depositions of thin films heterostructures to gain further understanding of the reduction of the SrTiO3. For thermal annealing, our results prove the attached measurement devices (mass spectrometer/ cold cathode gauge) to be primarily responsible for the reduction of SrTiO3 in the deposition chamber by shifting the thermodynamic equilibrium to a more reducing atmosphere. We investigated the impact of our findings on the pulsed laser deposition growth at low pressure for LaAlO3/SrTiO3. During deposition the reduction triggered by the presence of the laser plume dominates and the impact of the measurement devices plays a minor role. During post annealing a complete reoxidization of samples is inhibited by an insufficient supply of oxygen.

15.
Sci Rep ; 6: 22410, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27009359

RESUMO

The influence of non-equilibrium and equilibrium processes during growth of LaAlO3/SrTiO3 (LAO/STO) heterostructures is analyzed. We investigate the electronic properties of LAO/STO heterostructures obtained at constant growth conditions after annealing in different oxygen atmospheres within the typical growth window (1 × 10(-4) mbar -1 × 10(-2) mbar). The variation of annealing conditions is found to cause a similar change of electronic properties as observed for samples grown in different oxygen pressure. The results indicate that equilibrium defect formation is the dominant process for establishing the properties of the two-dimensional electron gas (2DEG), while growth dynamics play a minor role in the typical LAO/STO growth regime. Furthermore, the effects of non-equilibrium processes occurring during growth are investigated in detail by quenching just-grown LAO/STO heterostructures directly after growth. We show that during growth the sample is pushed into a non-equilibrium state. After growth, the sample then relaxes towards equilibrium, while the relaxation rate strongly depends on the ambient pressure. The observed relaxation behavior is mainly associated with a reoxidation of the STO bulk, while the 2DEG is formed immediately after the growth.

16.
Nanoscale ; 7(34): 14351-7, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26246071

RESUMO

In this study, the influence of the local oxygen vacancy concentration on piezoresponse force microscopy (PFM) measurements was investigated. Ultra-thin single-crystalline SrTiO3 thin films were deposited on niobium doped SrTiO3 substrates and analyzed using a combined PFM and local conductive atomic force microscopy (LC-AFM) measurement setup. After applying different polarization voltages between ±2 V and ±5 V to the thin films, we simultaneously observed an anomalous contrast in the piezoresponse amplitude and phase signal as well as a changed local conductivity in the exact same region. Since classic ferroelectricity can be excluded as the reason for the observed contrast, an influence of the local oxygen vacancy concentration on the piezoresponse is considered. Additionally, the surface potential was measured using Kelvin probe force microscopy (KPFM) revealing a change in surface potential in the regions of the applied voltage. The observed relaxation of the surface potential over time was fitted to a local oxidation reaction of the previously reduced regions of the ultra-thin SrTiO3 film. We propose a model that relates the local oxygen vacancy concentration to the surface potential. The influence of the oxygen vacancy concentration on the PFM measurements is explained.

17.
Sci Rep ; 5: 11829, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26189436

RESUMO

Emerging electrical and magnetic properties of oxide interfaces are often dominated by the termination and stoichiometry of substrates and thin films, which depend critically on the growth conditions. Currently, these quantities have to be measured separately with different sophisticated techniques. This report will demonstrate that the analysis of angle dependent X-ray photoelectron intensity ratios provides a unique tool to determine both termination and stoichiometry simultaneously in a straightforward experiment. Fitting the experimental angle dependence with a simple analytical model directly yields both values. The model is calibrated through the determination of the termination of SrTiO3 single crystals after systematic pulsed laser deposition of sub-monolayer thin films of SrO. We then use the model to demonstrate that during homoepitaxial SrTiO3 growth, excess Sr cations are consumed in a self-organized surface termination conversion before cation defects are incorporated into the film. We show that this termination conversion results in insulating properties of interfaces between polar perovskites and SrTiO3 thin films. These insights about oxide thin film growth can be utilized for interface engineering of oxide heterostructures. In particular, they suggest a recipe for obtaining two-dimensional electron gases at thin film interfaces: SrTiO3 should be deposited slightly Ti-rich to conserve the TiO2-termination.

18.
Nanoscale ; 7(3): 1013-22, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25469599

RESUMO

The electrical properties of the metallic interface in LaAlO3/SrTiO3 (LAO/STO) bilayers are investigated with focus on the role of cationic defects in thin film STO. Systematic growth-control of the STO thin film cation stoichiometry (defect-engineering) yields a relation between cationic defects in the STO layer and electronic properties of the bilayer-interface. Hall measurements reveal a stoichiometry-effect primarily on the electron mobility. The results indicate an enhancement of scattering processes in as-grown non-stoichiometric samples indicating an increased density of defects. Furthermore, we discuss the thermodynamic processes and defect-exchange reactions at the LAO/STO-bilayer interface determined in high temperature equilibrium. By quenching defined defect states from high temperature equilibrium, we finally connect equilibrium thermodynamics with room temperature transport. The results are consistent with the defect-chemistry model suggested for LAO/STO interfaces. Moreover, they reveal an additional healing process of extended defects in thin film STO.

19.
Nanoscale ; 6(21): 12864-76, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25263456

RESUMO

The transport properties of edge dislocations comprising a symmetrical 6° [001] tilt grain boundary in weakly acceptor-doped SrTiO3 were investigated by means of various experimental and computational techniques. Oxygen transport along the dislocation array was probed by means of (18)O/(16)O exchange experiments under (standard) oxidising conditions (pO2 = 5 × 10(-1) bar) and also under reducing conditions (pO2 = 7 × 10(-22) bar) at T = 973 K. In both cases, isotope profiles obtained by Secondary Ion Mass Spectrometry (SIMS) indicated no evidence of fast diffusion along the dislocation array. Charge transport across the dislocation array was probed in equilibrium electrical conductivity measurements as a function of oxygen partial pressure, 10(-23) ≤ pO2/bar ≤ 1 at temperatures of T/K = 950, 1050, 1100. A significant decrease in the conductivity of the bicrystal (relative to that of a single crystal) was observed under oxidising conditions, but not under reducing conditions. These studies were complemented by static lattice simulations employing empirical pair-potentials. The simulations predict, that the tilt boundary comprises two types of dislocation cores, that the formation of oxygen vacancies is energetically preferred at both cores relative to the bulk, and that the migration of oxygen ions along both cores is hindered relative to the bulk. Combining all results and literature reports, we present a comprehensive and consistent picture of the transport properties of dislocations in SrTiO3.

20.
Microsc Microanal ; 19(2): 310-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23452378

RESUMO

A single layer of LaAlO3 with a nominal thickness of one unit cell, which is sandwiched between a SrTiO3 substrate and a SrTiO3 capping layer, is quantitatively investigated by high-resolution transmission electron microscopy. By the use of an aberration-corrected electron microscope and by employing sophisticated numerical image simulation procedures, significant progress is made in two aspects. First, the structural as well as the chemical features of the interface are determined simultaneously on an atomic scale from the same specimen area. Second, the evaluation of the structural and chemical data is carried out in a fully quantitative way on the basis of the absolute image contrast, which has not been achieved so far in materials science investigations using high-resolution electron microscopy. Considering the strong influence of even subtle structural details on the electronic properties of interfaces in oxide materials, a fully quantitative interface analysis, which makes positional data available with picometer precision together with the related chemical information, can contribute to a better understanding of the functionality of such interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...