Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(11): 103324, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34805787

RESUMO

Dragonflies and damselflies are among the earliest flying insects with extant representatives. However, unraveling details of their long evolutionary history, such as egg laying (oviposition) strategies, is impeded by unresolved phylogenetic relationships, particularly in damselflies. Here we present a transcriptome-based phylogenetic reconstruction of Odonata, analyzing 2,980 protein-coding genes in 105 species representing nearly all the order's families. All damselfly and most dragonfly families are recovered as monophyletic. Our data suggest a sister relationship between dragonfly families of Gomphidae and Petaluridae. According to our divergence time estimates, both crown-Zygoptera and -Anisoptera arose during the late Triassic. Egg-laying with a reduced ovipositor apparently evolved in dragonflies during the late Jurassic/early Cretaceous. Lastly, we also test the impact of fossil choice and placement, particularly, of the extinct fossil species, †Triassolestodes asiaticus, and †Proterogomphus renateae on divergence time estimates. We find placement of †Proterogomphus renateae to be much more impactful than †Triassolestodes asiaticus.

2.
Mol Phylogenet Evol ; 120: 286-296, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29247847

RESUMO

Chalcidoidea are a megadiverse group of mostly parasitoid wasps of major ecological and economical importance that are omnipresent in almost all extant terrestrial habitats. The timing and pattern of chalcidoid diversification is so far poorly understood and has left many important questions on the evolutionary history of Chalcidoidea unanswered. In this study, we infer the early divergence events within Chalcidoidea and address the question of whether or not ancestral chalcidoids were small egg parasitoids. We also trace the evolution of some key traits: jumping ability, development of enlarged hind femora, and associations with figs. Our phylogenetic inference is based on the analysis of 3,239 single-copy genes across 48 chalcidoid wasps and outgroups representatives. We applied an innovative a posteriori evaluation approach to molecular clock-dating based on nine carefully validated fossils, resulting in the first molecular clock-based estimation of deep Chalcidoidea divergence times. Our results suggest a late Jurassic origin of Chalcidoidea, with a first divergence of morphologically and biologically distinct groups in the early to mid Cretaceous, between 129 and 81 million years ago (mya). Diversification of most extant lineages happened rapidly after the Cretaceous in the early Paleogene, between 75 and 53 mya. The inferred Chalcidoidea tree suggests a transition from ancestral minute egg parasitoids to larger-bodied parasitoids of other host stages during the early history of chalcidoid evolution. The ability to jump evolved independently at least three times, namely in Eupelmidae, Encyrtidae, and Tanaostigmatidae. Furthermore, the large-bodied strongly sclerotized species with enlarged hind femora in Chalcididae and Leucospidae are not closely related. Finally, the close association of some chalcidoid wasps with figs, either as pollinators, or as inquilines/gallers or as parasitoids, likely evolved at least twice independently: in the Eocene, giving rise to fig pollinators, and in the Oligocene or Miocene, resulting in non-pollinating fig-wasps, including gallers and parasitoids. The origins of very speciose lineages (e.g., Mymaridae, Eulophidae, Pteromalinae) are evenly spread across the period of chalcidoid evolution from early Cretaceous to the late Eocene. Several shifts in biology and morphology (e.g., in host exploitation, body shape and size, life history), each followed by rapid radiations, have likely enabled the evolutionary success of Chalcidoidea.


Assuntos
Filogenia , Transcriptoma , Vespas/classificação , Animais , Evolução Molecular , Fósseis , Sequenciamento de Nucleotídeos em Larga Escala , Óvulo/metabolismo , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de RNA , Vespas/genética
3.
Curr Biol ; 27(7): 1013-1018, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28343967

RESUMO

Hymenoptera (sawflies, wasps, ants, and bees) are one of four mega-diverse insect orders, comprising more than 153,000 described and possibly up to one million undescribed extant species [1, 2]. As parasitoids, predators, and pollinators, Hymenoptera play a fundamental role in virtually all terrestrial ecosystems and are of substantial economic importance [1, 3]. To understand the diversification and key evolutionary transitions of Hymenoptera, most notably from phytophagy to parasitoidism and predation (and vice versa) and from solitary to eusocial life, we inferred the phylogeny and divergence times of all major lineages of Hymenoptera by analyzing 3,256 protein-coding genes in 173 insect species. Our analyses suggest that extant Hymenoptera started to diversify around 281 million years ago (mya). The primarily ectophytophagous sawflies are found to be monophyletic. The species-rich lineages of parasitoid wasps constitute a monophyletic group as well. The little-known, species-poor Trigonaloidea are identified as the sister group of the stinging wasps (Aculeata). Finally, we located the evolutionary root of bees within the apoid wasp family "Crabronidae." Our results reveal that the extant sawfly diversity is largely the result of a previously unrecognized major radiation of phytophagous Hymenoptera that did not lead to wood-dwelling and parasitoidism. They also confirm that all primarily parasitoid wasps are descendants of a single endophytic parasitoid ancestor that lived around 247 mya. Our findings provide the basis for a natural classification of Hymenoptera and allow for future comparative analyses of Hymenoptera, including their genomes, morphology, venoms, and parasitoid and eusocial life styles.


Assuntos
Evolução Biológica , Himenópteros/classificação , Proteínas de Insetos/genética , Animais , Himenópteros/genética , Himenópteros/fisiologia , Filogenia
4.
PLoS One ; 12(1): e0169144, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28076427

RESUMO

India's unique and highly diverse biota combined with its unique geodynamical history has generated significant interest in the patterns and processes that have shaped the current distribution of India's flora and fauna and their biogeographical relationships. Fifty four million year old Cambay amber from northwestern India provides the opportunity to address questions relating to endemism and biogeographic history by studying fossil insects. Within the present study seven extant and three fossil genera of biting midges are recorded from Cambay amber and five new species are described: Eohelea indica Stebner & Szadziewski n. sp., Gedanohelea gerdesorum Stebner & Szadziewski n. sp., Meunierohelea cambayana Stebner & Szadziewski n. sp., Meunierohelea borkenti Stebner & Szadziewski n. sp., and Meunierohelea orientalis Stebner & Szadziewski n. sp. Fossils of species in the genera Leptoconops Skuse, 1889, Forcipomyia Meigen, 1818, Brachypogon Kieffer, 1899, Stilobezzia Kieffer, 1911, Serromyia Meigen, 1818, and Mantohelea Szadziewski, 1988 are recorded without formal description. Furthermore, one fossil belonging to the genus Camptopterohelea Wirth & Hubert, 1960 is included in the present study. Our study reveals faunal links among Ceratopogonidae from Cambay amber and contemporaneous amber from Fushun, China, Eocene Baltic amber from Europe, as well as the modern Australasian and the Oriental regions. These findings imply that faunal exchange between Europe, Asia and India took place before the formation of Cambay amber in the early Eocene.


Assuntos
Âmbar , Biota , Ceratopogonidae , Fósseis , Animais , Ceratopogonidae/anatomia & histologia , Feminino , História Antiga , Índia , Masculino , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...