Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Semin Perinatol ; : 151930, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38910063

RESUMO

Therapeutic hypothermia is now standard of care for neonates with hypoxic-ischemic encephalopathy (HIE) in high income countries (HIC). Conversely, compelling trial evidence suggests that hypothermia is ineffective, and may be deleterious, in low- and middle-income countries (LMIC), likely reflecting the lower proportion of infants who had sentinel events at birth, suggesting that injury had advanced to a stage when hypothermia is no longer effective. Although hypothermia significantly reduced the risk of death and disability in HICs, many infants survived with disability and in principle may benefit from targeted add-on neuroprotective or neurorestorative therapies. The present review will assess biomarkers that could be used to personalize treatment for babies with HIE - to determine first whether an individual infant is likely to respond to hypothermia, and second, whether additional treatments may be beneficial.

3.
Pediatr Res ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902453

RESUMO

BACKGROUND: 'Neonatal encephalopathy' (NE) describes a group of conditions in term infants presenting in the earliest days after birth with disturbed neurological function of cerebral origin. NE is aetiologically heterogenous; one cause is peripartum hypoxic ischaemia. Lack of uniformity in the terminology used to describe NE and its diagnostic criteria creates difficulty in the design and interpretation of research and complicates communication with families. The DEFINE study aims to use a modified Delphi approach to form a consensus definition for NE, and diagnostic criteria. METHODS: Directed by an international steering group, we will conduct a systematic review of the literature to assess the terminology used in trials of NE, and with their guidance perform an online Real-time Delphi survey to develop a consensus diagnosis and criteria for NE. A consensus meeting will be held to agree on the final terminology and criteria, and the outcome disseminated widely. DISCUSSION: A clear and consistent consensus-based definition of NE and criteria for its diagnosis, achieved by use of a modified Delphi technique, will enable more comparability of research results and improved communication among professionals and with families. IMPACT: The terms Neonatal Encephalopathy and Hypoxic Ischaemic Encephalopathy tend to be used interchangeably in the literature to describe a term newborn with signs of encephalopathy at birth. This creates difficulty in communication with families and carers, and between medical professionals and researchers, as well as creating difficulty with performance of research. The DEFINE project will use a Real-time Delphi approach to create a consensus definition for the term 'Neonatal Encephalopathy'. A definition formed by this consensus approach will be accepted and utilised by the neonatal community to improve research, outcomes, and parental experience.

6.
Bioengineering (Basel) ; 11(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38534490

RESUMO

Brain maturity and many clinical treatments such as therapeutic hypothermia (TH) can significantly influence the morphology of neonatal EEG seizures after hypoxia-ischemia (HI), and so there is a need for generalized automatic seizure identification. This study validates efficacy of advanced deep-learning pattern classifiers based on a convolutional neural network (CNN) for seizure detection after HI in fetal sheep and determines the effects of maturation and brain cooling on their accuracy. The cohorts included HI-normothermia term (n = 7), HI-hypothermia term (n = 14), sham-normothermia term (n = 5), and HI-normothermia preterm (n = 14) groups, with a total of >17,300 h of recordings. Algorithms were trained and tested using leave-one-out cross-validation and k-fold cross-validation approaches. The accuracy of the term-trained seizure detectors was consistently excellent for HI-normothermia preterm data (accuracy = 99.5%, area under curve (AUC) = 99.2%). Conversely, when the HI-normothermia preterm data were used in training, the performance on HI-normothermia term and HI-hypothermia term data fell (accuracy = 98.6%, AUC = 96.5% and accuracy = 96.9%, AUC = 89.6%, respectively). Findings suggest that HI-normothermia preterm seizures do not contain all the spectral features seen at term. Nevertheless, an average 5-fold cross-validated accuracy of 99.7% (AUC = 99.4%) was achieved from all seizure detectors. This significant advancement highlights the reliability of the proposed deep-learning algorithms in identifying clinically translatable post-HI stereotypic seizures in 256Hz recordings, regardless of maturity and with minimal impact from hypothermia.

7.
J Cereb Blood Flow Metab ; : 271678X241236014, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415649

RESUMO

Antenatal hypoxia-ischaemia (HI) in preterm fetal sheep can trigger delayed evolution of severe, cystic white matter injury (WMI), in a similar timecourse to WMI in preterm infants. We therefore examined how severe hypoxia-ischaemia affects recovery of electroencephalographic (EEG) activity. Chronically instrumented preterm fetal sheep (0.7 gestation) received 25 min of complete umbilical cord occlusion (UCO, n = 9) or sham occlusion (controls, n = 9), and recovered for 21 days. HI was associated with a shift to lower frequency EEG activity for the first 5 days with persisting loss of EEG power in the delta and theta bands, and initial loss of power in the alpha and beta bands in the first 14 days of recovery. In the final 3 days of recovery, there was a marked rhythmic shift towards higher frequency EEG activity after UCO. The UCO group spent less time in high-voltage sleep, and in the early evening (7:02 pm ± 47 min) abruptly stopped cycling between sleep states, with a shift to a high frequency state for 2 h 48 min ± 40 min, with tonic electromyographic activity. These findings demonstrate persisting EEG and sleep state dysmaturation after severe hypoxia-ischaemia. Loss of fetal or neonatal sleep state cycling in the early evening may be a useful biomarker for evolving cystic WMI.

10.
Pediatr Res ; 95(5): 1224-1236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114609

RESUMO

The survival of preterm infants has steadily improved thanks to advances in perinatal and neonatal intensive clinical care. The focus is now on finding ways to improve morbidities, especially neurological outcomes. Although antenatal steroids and magnesium for preterm infants have become routine therapies, studies have mainly demonstrated short-term benefits for antenatal steroid therapy but limited evidence for impact on long-term neurodevelopmental outcomes. Further advances in neuroprotective and neurorestorative therapies, improved neuromonitoring modalities to optimize recruitment in trials, and improved biomarkers to assess the response to treatment are essential. Among the most promising agents, multipotential stem cells, immunomodulation, and anti-inflammatory therapies can improve neural outcomes in preclinical studies and are the subject of considerable ongoing research. In the meantime, bundles of care protecting and nurturing the brain in the neonatal intensive care unit and beyond should be widely implemented in an effort to limit injury and promote neuroplasticity. IMPACT: With improved survival of preterm infants due to improved antenatal and neonatal care, our focus must now be to improve long-term neurological and neurodevelopmental outcomes. This review details the multifactorial pathogenesis of preterm brain injury and neuroprotective strategies in use at present, including antenatal care, seizure management and non-pharmacological NICU care. We discuss treatment strategies that are being evaluated as potential interventions to improve the neurodevelopmental outcomes of infants born prematurely.


Assuntos
Recém-Nascido Prematuro , Unidades de Terapia Intensiva Neonatal , Fármacos Neuroprotetores , Humanos , Recém-Nascido , Fármacos Neuroprotetores/uso terapêutico , Neuroproteção , Lesões Encefálicas/terapia
13.
Artigo em Inglês | MEDLINE | ID: mdl-38082957

RESUMO

Neonatal seizures after an hypoxic-ischemic (HI) event in preterm newborns can contribute to neural injury and cause impaired brain development. Preterm neonatal seizures are often not detected or their occurrence underestimated. Therefore, there is a need to improve knowledge about preterm seizures that can help establish diagnostic tools for accurate identification of seizures and for determining morphological differences. We have previously shown the superior utility of deep-learning algorithms for the accurate identification and quantification of post-HI microscale epileptiform transients (e.g., gamma spikes and sharp waves) in preterm fetal sheep models; before the irreversible secondary phase of cerebral energy failure starts by the bursts of high-amplitude stereotypic evolving seizures (HAS) in the signal. We have previously developed successful deep-learning algorithms that accurately identify and quantify the micro-scale transients, during the latent phase. Building up on our deep-learning strategies, this work introduces a real-time deep-learning-based pattern fusion approach to identify HAS in the 256Hz sampled post-HI data from our preterm fetuses. Here, for the first time, we propose a 17-layer deep convolutional neural network (CNN) classifier fed with 2D wavelet-scalogram (WS) images of the EEG patterns for accurate seizure identification. The WS-CNN classifier was cross-validated over 1812 manually annotated EEG segments during ~6 to 48 hours post-HI recordings. The classifier accurately recognized HAS patterns with 97.19% overall accuracy (AUC = 0.96).Clinical relevance-The promising results from this preliminary work indicate the ability of the proposed WS-CNN pattern classifier to identify HI-related seizures in the neonatal preterm brain using 256Hz EEG; the frequency commonly used clinically for data collection.


Assuntos
Aprendizado Profundo , Epilepsia , Ovinos , Animais , Análise de Ondaletas , Eletroencefalografia/métodos , Lógica Fuzzy , Hipóxia , Convulsões/diagnóstico , Convulsões/etiologia , Feto
14.
AAPS J ; 26(1): 4, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051395

RESUMO

The objective was to apply a population model to describe the time course and variability of serum creatinine (sCr) in (near)term neonates with moderate to severe encephalopathy during and after therapeutic hypothermia (TH). The data consisted of sCr observations up to 10 days of postnatal age in neonates who underwent TH during the first 3 days after birth. Available covariates were birth weight (BWT), gestational age (GA), survival, and acute kidney injury (AKI). A previously published population model of sCr kinetics in neonates served as the base model. This model predicted not only sCr but also the glomerular filtration rate normalized by its value at birth (GFR/GFR0). The model was used to compare the TH neonates with a reference full term non-asphyxiated population of neonates. The estimates of the model parameters had good precision and showed high between subject variability. AKI influenced most of the estimated parameters denoting a strong impact on sCr kinetics and GFR. BWT and GA were not significant covariates. TH transiently increased [Formula: see text] in TH neonates over the first days compared to the reference group. Asphyxia impacted not only GFR, but also the [Formula: see text] synthesis rate. We also observed that AKI neonates exhibit a delayed onset of postnatal GFR increase and have a higher [Formula: see text] synthesis rate compared to no-AKI patients. Our findings show that the use of [Formula: see text] as marker of renal function in asphyxiated neonates treated with TH to guide dose selection for renally cleared drugs is challenging, while we captured the postnatal sCr patterns in this specific population.


Assuntos
Injúria Renal Aguda , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Humanos , Recém-Nascido , Creatinina , Hipóxia-Isquemia Encefálica/terapia , Taxa de Filtração Glomerular , Injúria Renal Aguda/terapia
15.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069249

RESUMO

Seizures are common in preterm newborns and are associated with poor neurodevelopmental outcomes. Current anticonvulsants have poor efficacy, and many have been associated with upregulation of apoptosis in the developing brain. Apigenin, a natural bioactive flavonoid, is a potent inhibitor of hyaluronidase and reduces seizures in adult animal models. However, its impact on perinatal seizures is unclear. In the present study, we examined the effect of apigenin and S3, a synthetic, selective hyaluronidase inhibitor, on seizures after cerebral ischemia in preterm fetal sheep at 0.7 gestation (98-99 days, term ~147 days). Fetuses received sham ischemia (n = 9) or ischemia induced by bilateral carotid occlusion for 25 min. Immediately after ischemia, fetuses received either a continuous infusion of vehicle (0.036% dimethyl sulfoxide, n = 8) or apigenin (50 µM, n = 6). In a pilot study, we also tested infusion of S3 (2 µM, n = 3). Fetuses were monitored continuously for 72 h after ischemia. Infusion of apigenin or S3 were both associated with reduced numbers of animals with seizures, total seizure time, and mean seizure burden. S3 was also associated with a reduction in the total number of seizures over the 72 h recovery period. In animals that developed seizures, apigenin was associated with earlier cessation of seizures. However, apigenin or S3 treatment did not alter recovery of electroencephalographic power or spectral edge frequency. These data support that targeting brain hyaluronidase activity with apigenin or S3 may be an effective strategy to reduce perinatal seizures following ischemia. Further studies are required to determine their effects on neurohistological outcomes.


Assuntos
Apigenina , Hipóxia-Isquemia Encefálica , Gravidez , Feminino , Ovinos , Animais , Apigenina/farmacologia , Apigenina/uso terapêutico , Hialuronoglucosaminidase , Projetos Piloto , Convulsões/tratamento farmacológico , Feto/patologia , Isquemia , Eletroencefalografia , Hipóxia-Isquemia Encefálica/patologia
17.
Semin Pediatr Neurol ; 47: 101072, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37919038

RESUMO

UNDERSTANDING FETAL HEART RATE PATTERNS THAT MAY PREDICT ANTENATAL AND INTRAPARTUM NEURAL INJURY: Christopher A. Lear, Jenny A. Westgate, Austin Ugwumadu, Jan G. Nijhuis, Peter R. Stone, Antoniya Georgieva, Tomoaki Ikeda, Guido Wassink , Laura Bennet , Alistair J. Gunn Seminars in Pediatric Neurology Volume 28, December 2018, Pages 3-16 Electronic fetal heart rate (FHR) monitoring is widely used to assess fetal well-being throughout pregnancy and labor. Both antenatal and intrapartum FHR monitoring are associated with a high negative predictive value and a very poor positive predictive value. This in part reflects the physiological resilience of the healthy fetus and the remarkable effectiveness of fetal adaptations to even severe challenges. In this way, the majority of "abnormal" FHR patterns in fact reflect a fetus' appropriate adaptive responses to adverse in utero conditions. Understanding the physiology of these adaptations, how they are reflected in the FHR trace and in what conditions they can fail is therefore critical to appreciating both the potential uses and limitations of electronic FHR monitoring.


Assuntos
Frequência Cardíaca Fetal , Trabalho de Parto , Criança , Gravidez , Feminino , Humanos , Frequência Cardíaca Fetal/fisiologia , Trabalho de Parto/fisiologia , Feto , Frequência Cardíaca
18.
J Neuroinflammation ; 20(1): 241, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864272

RESUMO

BACKGROUND: Perinatal infection/inflammation is associated with a high risk for neurological injury and neurodevelopmental impairment after birth. Despite a growing preclinical evidence base, anti-inflammatory interventions have not been established in clinical practice, partly because of the range of potential targets. We therefore systematically reviewed preclinical studies of immunomodulation to improve neurological outcomes in the perinatal brain and assessed their therapeutic potential. METHODS: We reviewed relevant studies published from January 2012 to July 2023 using PubMed, Medline (OvidSP) and EMBASE databases. Studies were assessed for risk of bias using the SYRCLE risk of bias assessment tool (PROSPERO; registration number CRD42023395690). RESULTS: Forty preclinical publications using 12 models of perinatal neuroinflammation were identified and divided into 59 individual studies. Twenty-seven anti-inflammatory agents in 19 categories were investigated. Forty-five (76%) of 59 studies reported neuroprotection, from all 19 categories of therapeutics. Notably, 10/10 (100%) studies investigating anti-interleukin (IL)-1 therapies reported improved outcome, whereas half of the studies using corticosteroids (5/10; 50%) reported no improvement or worse outcomes with treatment. Most studies (49/59, 83%) did not control core body temperature (a known potential confounder), and 25 of 59 studies (42%) did not report the sex of subjects. Many studies did not clearly state whether they controlled for potential study bias. CONCLUSION: Anti-inflammatory therapies are promising candidates for treatment or even prevention of perinatal brain injury. Our analysis highlights key knowledge gaps and opportunities to improve preclinical study design that must be addressed to support clinical translation.


Assuntos
Anti-Inflamatórios , Neuroproteção , Gravidez , Animais , Feminino , Humanos , Encéfalo
19.
J Cereb Blood Flow Metab ; : 271678X231197380, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824725

RESUMO

Perinatal infection or inflammation are associated with adverse neurodevelopmental effects and cardiovascular impairments in preterm infants. Most preclinical studies have examined the effects of gram-negative bacterial inflammation on the developing brain, although gram-positive bacterial infections are a major contributor to adverse outcomes. Killed Su-strain group 3 A streptococcus pyogenes (Picibanil, OK-432) is being used for pleurodesis in fetal hydrothorax/chylothorax. We therefore examined the neural and cardiovascular effects of clinically relevant intra-plural infusions of Picibanil. Chronically instrumented preterm (0.7 gestation) fetal sheep received an intra-pleural injection of low-dose (0.1 mg, n = 8) or high-dose (1 mg, n = 8) Picibanil or saline-vehicle (n = 8). Fetal brains were collected for histology one-week after injection. Picibanil exposure was associated with sustained diffuse white matter inflammation and loss of immature and mature oligodendrocytes and subcortical neurons, and associated loss of EEG power. These neural effects were not dose-dependent. Picibanil was also associated with acute changes in heart rate and attenuation of the maturational increase in mean arterial pressure. Even a single exposure to a low-dose gram-positive bacterial-mediated inflammation during the antenatal period is associated with prolonged changes in vascular and neural function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...