Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Front Vet Sci ; 11: 1270329, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384953

RESUMO

Introduction: The use of existing data to provide surveillance intelligence is widely advocated but often presents considerable challenges. Two data sources could be used as proxies for the mortality experienced by the Scottish cattle population: deaths recorded in the mandatory register [Cattle Tracing System (CTS)] and fallen stock collections by the National Fallen Stock Company (NSFCo) with a nationwide voluntary membership. Methods: Data for the period 2011-2016 were described and compared to establish their strengths and limitations. Similarities and differences in their temporal, seasonal and spatial patterns were examined overall, at postcode area level and for different age groups. Temporal aberration detection algorithms (TADA) were fitted. Results: Broadly, similar patterns were observed in the two datasets; however, there were some notable differences. The observed seasonal, annual and spatial patterns match expectations, given knowledge of Scottish cattle production systems. The registry data provide more comprehensive coverage of all areas of Scotland, while collections data provide a more comprehensive measure of the mortality experienced in 0-1-month-old calves. Discussion: Consequently, estimates of early calf mortality and their impact on the livestock sector made using CTS, or successor registers, will be under-estimates. This may apply to other registry-based systems. Fitted TADA detected points of deviations from expected norms some of which coincided in the two datasets; one with a known external event that caused increased mortality. We have demonstrated that both data sources do have the potential to be utilized to provide measures of mortality in the Scottish cattle population that could inform surveillance activities. While neither is perfect, they are complementary. Each has strengths and weaknesses, so ideally, a system where they are analyzed and interpreted in parallel would optimize the information obtained for surveillance purposes for epidemiologists, risk managers, animal health policy-makers and the wider livestock industry sector. This study provides a foundation on which to build an operational system. Further development will require improvements in the timeliness of data availability and further investment of resources.

2.
Front Microbiol ; 14: 1260422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029122

RESUMO

O26 is the commonest non-O157 Shiga toxin (stx)-producing Escherichia coli serogroup reported in human infections worldwide. Ruminants, particularly cattle, are the primary reservoir source for human infection. In this study, we compared the whole genomes and virulence profiles of O26:H11 strains (n = 99) isolated from Scottish cattle with strains from human infections (n = 96) held by the Scottish Escherichia coli O157/STEC Reference Laboratory, isolated between 2002 and 2020. Bovine strains were from two national cross-sectional cattle surveys conducted between 2002-2004 and 2014-2015. A maximum likelihood phylogeny was constructed from a core-genome alignment with the O26:H11 strain 11368 reference genome. Genomes were screened against a panel of 2,710 virulence genes using the Virulence Finder Database. All stx-positive bovine O26:H11 strains belonged to the ST21 lineage and were grouped into three main clades. Bovine and human source strains were interspersed, and the stx subtype was relatively clade-specific. Highly pathogenic stx2a-only ST21 strains were identified in two herds sampled in the second cattle survey and in human clinical infections from 2010 onwards. The closest pairwise distance was 9 single-nucleotide polymorphisms (SNPs) between Scottish bovine and human strains and 69 SNPs between the two cattle surveys. Bovine O26:H11 was compared to public EnteroBase ST29 complex genomes and found to have the greatest commonality with O26:H11 strains from the rest of the UK, followed by France, Italy, and Belgium. Virulence profiles of stx-positive bovine and human strains were similar but more conserved for the stx2a subtype. O26:H11 stx-negative ST29 (n = 17) and ST396 strains (n = 5) were isolated from 19 cattle herds; all were eae-positive, and 10 of these herds yielded strains positive for ehxA, espK, and Z2098, gene markers suggestive of enterohaemorrhagic potential. There was a significant association (p < 0.001) between nucleotide sequence percent identity and stx status for the bacteriophage insertion site genes yecE for stx2 and yehV for stx1. Acquired antimicrobial resistance genes were identified in silico in 12.1% of bovine and 17.7% of human O26:H11 strains, with sul2, tet, aph(3″), and aph(6″) being most common. This study describes the diversity among Scottish bovine O26:H11 strains and investigates their relationship to human STEC infections.

4.
Prev Vet Med ; 204: 105654, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35489156

RESUMO

Amoebic gill disease (AGD) and complex gill disease (CGD) are the most significant marine gill diseases in salmon aquaculture in Scotland. Little is published about diagnostic performance of tests to detect these diseases, making it difficult to interpret test results. We estimated diagnostic sensitivity (DSe) and specificity (DSp) of common tests for AGD (gross AGD score, qPCR for Neoparamoeba perurans, histopathology) and CGD (gross proliferative gill disease (PGD) score, gross total gill score, histopathology). Because specifications in our sampling protocol implemented to encourage consistency across the farms might affect diagnostic performance of histopathology (historically the reference standard for gill diseases), we used Bayesian latent class models without reference standard. Cases and non-cases were based on less, medium, and severe stringent case definitions, representing different cut-off levels for the different tests. Gross gill scores for both diseases were excellent in designating non-diseased fish, DSps were generally around 1. To detect CGD, DSe of gross total gill score and gross PGD score were between respectively 0.81 (0.73 - 0.91 lower to upper 95% credible interval) and 0.53 (0.46 - 0.64) for medium stringent case definitions, and to detect AGD the DSe for the gross AGD score was between 0.53 (0.48-0.57) and 0.14 (0.07 - 0.22) for respectively the less and severe stringent case definition. Thus, gross gill scores were medium to good in designating truly diseased fish, implying some false negatives are expected. For CGD the DSe for gross total gill scores were the highest, for AGD it was the qPCR test at a DSe of 0.92 (0.86 - 0.99). For both diseases, DSe was lowest for histopathology, e.g. 0.23 (0.16 - 0.30) for AGD and 0.1 (0.07 - 0.14) for CGD under medium stringent case definitions, perhaps due to collecting the second gill arch on the right rather than the worst affected arch, whilst PCR sampling and gross gill scoring included multiple (PCR) or all (gross scoring) gill arches. The diagnostic goals of these tests differ; gross gill scoring provides a low-cost presumptive diagnosis, PCR a non-lethal confirmation of the presence of a specific pathogen and histopathology provides information on the underlying aetiology of gill damage as well as the extent, severity, and chronology of gill disease. An effective gill health surveillance strategy is likely to incorporate multiple diagnostic tools used in a complementary manner.


Assuntos
Doenças dos Peixes , Salmo salar , Amebíase , Animais , Teorema de Bayes , Doenças dos Peixes/diagnóstico , Brânquias , Análise de Classes Latentes , Reação em Cadeia da Polimerase em Tempo Real/veterinária
5.
Prev Vet Med ; 198: 105524, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775127

RESUMO

The modelling of disease spread is crucial to the farming industry and policy makers. In some of these industries, excellent data exist on animal movements, along with the networks that these movements create, and allow researchers to model spread of disease (both epidemic and endemic). The Cattle Tracing System is an online recording system for cattle births, deaths and between-herd movements in the United Kingdom and is an excellent resource for any researchers interested in networks or modelling infectious disease spread through the UK cattle system. Data exist that cover many years, and it can be useful to know how much change is occurring in a network, to help judge the merit of using historical data within a modelling context. This article uses the data to construct weighted directed monthly movement networks for two distinct periods of time, 2004-2006 and 2015-2017, to quantify by how much the underlying structure of the network has changed. Substantial changes in network structure may influence policy-makers directly or may influence models built upon the network data, and these in turn could impact policy-makers and their assessment of risk. We examined 13 network metrics, ranging from general descriptive metrics such as total number of nodes with movements and total movements, through to metrics to describe the network (e.g., Giant weakly and strongly connected components) and metrics calculated per node (betweenness, degree and strength). Mixed effect models show that there is a statistically significant effect of the period (2004-2006 vs 2015-2017) in the values of nine of the 13 network metrics. For example median total degree decreased by 19%. In addition to examining networks for two time periods, two updates of the data were examined to determine by how much the movement data stored for 2004-2006 had been cleansed between updates. Examination of these updates shows that there are small decreases in problem movements (such as animals leaving slaughterhouses) and therefore evidence of historical data being improved between updates. In combination with the significant effect of period on many of the network metrics, the modification of data between updates provides further evidence that the most recent available data should be used for network modelling. This will ensure that the most representative descriptions of the network are available to provide accurate modelling results to best inform policy makers.


Assuntos
Doenças dos Bovinos , Epidemias , Matadouros , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Meios de Transporte , Reino Unido
6.
Front Vet Sci ; 8: 688078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395571

RESUMO

The COST action "Standardising output-based surveillance to control non-regulated diseases of cattle in the European Union (SOUND control)," aims to harmonise the results of surveillance and control programmes (CPs) for non-EU regulated cattle diseases to facilitate safe trade and improve overall control of cattle infectious diseases. In this paper we aimed to provide an overview on the diversity of control for these diseases in Europe. A non-EU regulated cattle disease was defined as an infectious disease of cattle with no or limited control at EU level, which is not included in the European Union Animal health law Categories A or B under Commission Implementing Regulation (EU) 2020/2002. A CP was defined as surveillance and/or intervention strategies designed to lower the incidence, prevalence, mortality or prove freedom from a specific disease in a region or country. Passive surveillance, and active surveillance of breeding bulls under Council Directive 88/407/EEC were not considered as CPs. A questionnaire was designed to obtain country-specific information about CPs for each disease. Animal health experts from 33 European countries completed the questionnaire. Overall, there are 23 diseases for which a CP exists in one or more of the countries studied. The diseases for which CPs exist in the highest number of countries are enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis, bovine viral diarrhoea and anthrax (CPs reported by between 16 and 31 countries). Every participating country has on average, 6 CPs (min-max: 1-13) in place. Most programmes are implemented at a national level (86%) and are applied to both dairy and non-dairy cattle (75%). Approximately one-third of the CPs are voluntary, and the funding structure is divided between government and private resources. Countries that have eradicated diseases like enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis and bovine viral diarrhoea have implemented CPs for other diseases to further improve the health status of cattle in their country. The control of non-EU regulated cattle diseases is very heterogenous in Europe. Therefore, the standardising of the outputs of these programmes to enable comparison represents a challenge.

7.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33712425

RESUMO

Cattle are a reservoir for Shiga toxin-producing Escherichia coli (STEC), zoonotic pathogens that cause serious clinical disease. Scotland has a higher incidence of STEC infection in the human population than the European average. The aim of this study was to investigate the prevalence and epidemiology of non-O157 serogroups O26, O103, O111, and O145 and Shiga toxin gene carriage in Scottish cattle. Fecal samples (n = 2783) were collected from 110 herds in 2014 and 2015 and screened by real-time PCR. Herd-level prevalence (95% confidence interval [CI]) for O103, O26, and O145 was estimated as 0.71 (0.62, 0.79), 0.43 (0.34, 0.52), and 0.23 (0.16, 0.32), respectively. Only two herds were positive for O111. Shiga toxin prevalence was high in both herds and pats, particularly for stx2 (herd level: 0.99; 95% CI: 0.94, 1.0). O26 bacterial strains were isolated from 36 herds on culture. Fifteen herds yielded O26 stx-positive isolates that additionally harbored the intimin gene; six of these herds shed highly pathogenic stx2-positive strains. Multiple serogroups were detected in herds and pats, with only 25 herds negative for all serogroups. Despite overlap in detection, regional and seasonal effects were observed. Higher herd prevalence for O26, O103, and stx1 occurred in the South West, and this region was significant for stx2 at the pat level (P = 0.015). Significant seasonal variation was observed for O145 prevalence, with the highest prevalence in autumn (P = 0.032). Negative herds were associated with Central Scotland and winter. Herds positive for all serogroups were associated with autumn and larger herd size and were not housed at sampling.IMPORTANCE Cattle are reservoirs for Shiga toxin-producing Escherichia coli (STEC), bacteria shed in animal feces. Humans are infected through consumption of contaminated food or water and by direct contact, resulting in serious disease and kidney failure in the most vulnerable. The contribution of non-O157 serogroups to STEC illness was underestimated for many years due to the lack of specific tests. Recently, non-O157 human cases have increased, with O26 STEC of particular note. It is therefore vital to investigate the level and composition of non-O157 in the cattle reservoir and to compare them historically and by the clinical situation. In this study, we found cattle prevalence high for toxin, as well as for O103 and O26 serogroups. Pathogenic O26 STEC were isolated from 14% of study herds, with toxin subtypes similar to those seen in Scottish clinical cases. This study highlights the current risk to public health from non-O157 STEC in Scottish cattle.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Genes Bacterianos , Toxina Shiga/genética , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Fezes/microbiologia , Prevalência , Escócia/epidemiologia , Sorogrupo
8.
Front Vet Sci ; 7: 205, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391387

RESUMO

The design of surveillance strategies is often a compromise between science, feasibility, and available resources, especially when sampling is based at fixed locations, such as slaughter-houses. Advances in animal identification, movement recording and traceability should provide data that can facilitate the development, design and interpretation of surveillance activities. Here, for the first time since the introduction of electronic identification of sheep, the utility of a statutory sheep movement database to inform the design and interpretation of slaughter-house based surveillance activities has been investigated. Scottish sheep movement records for 2015-2018 were analyzed in combination with several other data sources. Patterns of off-farm movements of Scottish sheep to slaughter were described and the spatial distribution of several distinct slaughter populations, throughputs and catchment areas for Scottish slaughterhouses were determined. These were used to evaluate the coverage of a convenience-sample slaughter-house based survey for antimicrobial resistance (AMR). In addition, non-slaughter sheep movements within and between Scottish regions were described and inter-and intra-regional movement matrices were produced. There is potential at a number of levels for bias in spatially-associated factors for ovine surveillance activities based at Scottish slaughterhouses. The first is intrinsic because the slaughtered in Scotland population differs from the overall Scottish sheep slaughter population. Other levels will be survey-dependent and occur when the catchment area differs from the slaughtered in Scotland population and when the sampled sheep differ from the catchment area. These are both observed in the AMR survey. Furthermore, the Scottish non-slaughter sheep population is dynamic. Inter-regional movements vary seasonally, driven by the sheep calendar year, structure of the Scottish sheep industry and management practices. These sheep movement data provide a valuable resource for surveillance purposes, despite a number of challenges and limitations that were encountered. They can be used to identify and characterize the spatial origin of relevant populations and so inform the interpretation of existing slaughterhouse-based surveillance activities. They can be used to improve future design by exploring the feasibility and cost:benefit of alternative sampling strategies. Further development could also contribute to other surveillance activities, such as situational awareness and resource allocation, for the benefit of stakeholders.

9.
Transbound Emerg Dis ; 67(3): 1231-1246, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31880086

RESUMO

When assessing the role of live animal trade networks in the spread of infectious diseases in livestock, attention has focused mainly on direct movements of animals between premises, whereas the role of haulage vehicles used during transport, an indirect route for disease transmission, has largely been ignored. Here, we have assessed the impact of sharing haulage vehicles from livestock transport service providers on the connectivity between farms as well as on the spread of swine infectious diseases in Great Britain (GB). Using all pig movement records between April 2012 and March 2014 in GB, we built a series of directed and weighted static multiplex networks consisting of two layers of identical nodes, where nodes (farms) are linked either by (a) the direct movement of pigs and (b) the shared use of haulage vehicles. The haulage contact definition integrates the date of the move and the duration Δ s that lorries are left contaminated by pathogens, hence accounting for the temporal aspect of contact events. For increasing Δ s , descriptive network analyses were performed to assess the role of haulage on network connectivity. We then explored how viruses may spread throughout the GB pig sector by computing the reproduction number R . Our results showed that sharing haulage vehicles increases the number of contacts between farms by >50% and represents an important driver of disease transmission. In particular, sharing haulage vehicles, even if Δ s  < 1 day, will limit the benefit of the standstill regulation, increase the number of premises that could be infected in an outbreak, and more easily raise R above 1. This work confirms that sharing haulage vehicles has significant potential for spreading infectious diseases within the pig sector. The cleansing and disinfection process of haulage vehicles is therefore a critical control point for disease transmission risk mitigation.


Assuntos
Doenças Transmissíveis/veterinária , Surtos de Doenças/veterinária , Doenças dos Suínos/transmissão , Meios de Transporte , Criação de Animais Domésticos/métodos , Animais , Controle de Doenças Transmissíveis , Doenças Transmissíveis/epidemiologia , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Reino Unido
10.
BMC Vet Res ; 15(1): 444, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805948

RESUMO

BACKGROUND: Escherichia coli O157 is a bacterial pathogen associated with severe disease in humans for which cattle are an important reservoir of infection. The identification of possible risk factors for infection in cattle could facilitate the development of control strategies and interventions to mitigate the risk to human health. The purpose of this study was to utilize data collected in 2014-2015 during the two contemporaneous cross-sectional surveys of the British E. coli O157 in Cattle Study (BECS) to investigate potential risk factors for E. coli O157 status in cattle destined for the food chain. RESULTS: In the England & Wales survey only one variable, herd size, was associated with the outcome farm-level E. coli O157 positive status. The odds increased for each additional animal in the herd. In the Scotland survey, as well as a measure of herd size (the number of cattle aged 12-30 months), having brought breeding females on to the farm in the last year also increased the odds, whereas farms sampled in spring were less likely to be positive compared to those sampled in autumn. On the positive farms, in both surveys, an increase in the proportion of pats positive for E. coli O157 was associated with animals being housed at the time of sampling. However, the effect of housing on pat-level prevalence within positive groups was lower on farms from England & Wales than from Scotland (OR 0.45 (95% C.I. 0.24-0.86)). CONCLUSION: For the first time, factors associated with farm-level E. coli O157 status have been investigated in two contemporaneous surveys with comparable study design. Although factors associated with farm-level E. coli O157 status differed between the two surveys, one consistent factor was an association with a measure of herd size. Factors associated with the proportion of E. coli O157 positive pats within a positive farm were similar in both surveys but differed from those associated with farm-level status. These findings raise the hypothesis that measures to protect public health by reducing the risk from cattle may need to be tailored, rather than by assuming that a GB-wide protocol is the best approach.


Assuntos
Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli O157/isolamento & purificação , Animais , Derrame de Bactérias , Bovinos , Doenças dos Bovinos/epidemiologia , Estudos Transversais , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Modelos Biológicos , Fatores de Risco , Reino Unido/epidemiologia
11.
Front Vet Sci ; 6: 190, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275949

RESUMO

Traditionally, cost-benefit analyses (CBAs) focus on the direct costs of animal disease, including animal mortality, morbidity, and associated response costs. However, such approaches often fail to capture the wider, dynamic market impacts that could arise. The duration of these market dislocations could last well after an initial disease outbreak. More generally, current approaches also muddle definitions of indirect costs, confusing debate on the scope of the totalities of disease-induced economic impacts. The aim of this work was to clarify definitions of indirect costs in the context of animal diseases and to apply this definition to a time series methodological framework to estimate the indirect costs of animal disease control strategies, using a foot and mouth disease (FMD) outbreak in Scotland as a case study. Time series analysis is an econometric method for analyzing statistical relationships between data series over time, thus allowing insights into how market dynamics may change following a disease outbreak. First an epidemiological model simulated FMD disease dynamics based on alternative control strategies. Output from the epidemiological model was used to quantify direct costs and applied in a multivariate vector error correction model to quantify the indirect costs of alternative vaccine stock strategies as a result of FMD. Indirect costs were defined as the economic losses incurred in markets after disease freedom is declared. As such, our definition of indirect costs captures the knock-on price and quantity effects in six agricultural markets after a disease outbreak. Our results suggest that controlling a FMD epidemic with vaccination is less costly in direct and indirect costs relative to a no vaccination (i.e., "cull only") strategy, when considering large FMD outbreaks in Scotland. Our research clarifies and provides a framework for estimating indirect costs, which is applicable to both exotic and endemic diseases. Standard accounting CBAs only capture activities in isolation, ignore linkages across sectors, and do not consider price effects. However, our framework not only delineates when indirect costs start, but also captures the wider knock-on price effects between sectors, which are often omitted from CBAs but are necessary to support decision-making in animal disease prevention and control strategies.

12.
Front Vet Sci ; 6: 133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134213

RESUMO

The existence, stage of eradication and design of control programmes (CPs) for diseases that are not regulated by the EU differ between Member States. When freedom from infection is reached or being pursued, safe trade is essential to protect or reach that status. The aim of STOC free, a collaborative project between six countries, is to develop and validate a framework that enables a transparent and standardized comparison of confidence of freedom for CPs across herds, regions or countries. The framework consists of a model combined with a tool to facilitate the collection of the necessary parameters. All relevant actions taken in a CP are included in a Bayesian network model, which allows prior distributions for most parameters. In addition, frequency of occurrence and risk estimates for factors that influence either the probability of introduction or temporary misclassification leading to delayed detection of the infection are included in the model. Bovine viral diarrhea virus (BVDV) is used as an example disease. Many countries have CPs in place for BVDV and although elements of the CPs are similar, biosecurity measures and testing protocols, including types of tests and testing frequency, as well as target groups, differ widely. Although the initially developed framework is based on BVDV, the aim is to make it sufficiently generic to be adaptable to CPs for other diseases and possibly other species. Thus, STOC free will result in a single general framework, adaptable to multiple disease CPs, which aims to enhance the safety of trade.

13.
Vet Rec ; 184(18): 556, 2019 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-31023871

RESUMO

Traditional indicator-based livestock surveillance has been focused on case definitions, definitive diagnoses and laboratory confirmation. The use of syndromic disease surveillance would increase the population base from which animal health data are captured and facilitate earlier detection of new and re-emerging threats to animal health. Veterinary practitioners could potentially play a vital role in such activities. In a pilot study, specialist private veterinary practitioners (PVP) working in the English pig industry were asked to collect and transfer background data and disease incident reports for pig farms visited during the study period. Baseline data from 110 pig farms were received, along with 68 disease incident reports. Reports took an average of approximately 25 minutes to complete. Feedback from the PVPs indicated that they saw value in syndromic surveillance. Maintenance of anonymity in the outputs would be essential, as would timely access for the PVPs to relevant information on syndromic trends. Further guidance and standardisation would also be required. Syndromic surveillance by PVPs is possible for the pig industry. It has potential to fill current gaps in the collection of animal health data, as long as the engagement and participation of data providers can be obtained and maintained.


Assuntos
Surtos de Doenças/veterinária , Vigilância de Evento Sentinela/veterinária , Doenças dos Suínos/epidemiologia , Animais , Coleta de Dados/métodos , Inglaterra/epidemiologia , Projetos Piloto , Suínos
14.
Front Vet Sci ; 6: 487, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039248

RESUMO

There are calls from policy-makers and industry to use existing data sources to contribute to livestock surveillance systems, especially for syndromic surveillance. However, the practical implications of attempting to use such data sources are challenging; development often requires incremental steps in an iterative cycle. In this study the utility of business operational data from a voluntary fallen stock collection service was investigated, to determine if they could be used as a proxy for the mortality experienced by the British sheep population. Retrospectively, Scottish ovine fallen stock collection data (2011-2014) were transformed into meaningful units for analysis, temporal and spatial patterns were described, time-series methods and a temporal aberration detection algorithm applied. Distinct annual and spatial trends plus seasonal patterns were observed in the three age groups investigated. The algorithm produced an alarm at the point of an historic known departure from normal (April 2013) for two age groups, across Scotland as a whole and in specific postcode areas. The analysis was then extended. Initially, to determine if similar methods could be applied to ovine fallen stock collections from England and Wales for the same time period. Additionally, Scottish contemporaneous laboratory diagnostic submission data were analyzed to see if they could provide further insight for interpretation of statistical alarms. Collaboration was required between the primary data holders, those with industry sector knowledge, plus veterinary, epidemiological and statistical expertise, in order to turn data and analytical outcomes into potentially useful information. A number of limitations were identified and recommendations were made as to how some could be addressed in order to facilitate use of these data as surveillance "intelligence." e.g., improvements to data collection and provision. A recent update of the fallen stock collections data has enabled a longer temporal period to be analyzed, with evidence of changes made in line with the recommendations. Further development will be required before a functional system can be implemented. However, there is potential for use of these data as: a proxy measure for mortality in the sheep population; complementary components in a future surveillance system, and to inform the design of additional surveillance system components.

16.
PLoS One ; 13(6): e0198436, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29874292

RESUMO

Animal diseases are global issues affecting the productivity and financial profitability of affected farms. Johne's disease is distributed on farms worldwide and is an endemic contagious bacterial infection in ruminants caused by Mycobacterium avium subspecies paratuberculosis. In cattle, the clinical disease manifests itself as chronic enteritis resulting in reduced production, weight loss, and eventually death. Johne's disease is prevalent in the UK, including Scotland. Direct costs and losses associated with Johne's disease have been estimated in previous research, confirming an important economic impact of the disease in UK herds. Despite this, the distributional impact of Johne's disease among milk consumers and producers in Scotland has not been estimated. In this paper, we evaluate the change in society's economic welfare, namely to dairy producers (i.e. infected and uninfected herds) and milk consumers in Scotland induced by the introduction of Johne's disease in the national Scottish dairy herd. At the national-level, we conclude that the economic burden falls mainly on producers of infected herds and, to a lesser extent, milk consumers, while producers of uninfected herds benefit from the presence of Johne's. An infected producer's loss per cow is approximately two times larger in magnitude than that of an uninfected producer's gain. Such economic welfare estimates are an important comparison of the relative costs of national herd prevalence and the wider economic welfare implications for both producers and consumers. This is particularly important from a policy, public good, cost sharing, and human health perspective. The economic welfare framework presented in this paper can be applied to other diseases to examine the relative burden of society's economic welfare of alternative livestock disease scenarios. In addition, the sensitivity analysis evaluates uncertainty in economic welfare given limited data and uncertainty in the national herd prevalence, and other input parameters, associated with Johne's disease in Scotland. Therefore, until the prevalence of Johne's is better understood, the full economic cost to Scottish dairy herds remains uncertain but in the meantime the sensitivity analysis evaluates the robustness of economic welfare to such uncertainties.


Assuntos
Bem-Estar do Animal/economia , Doenças dos Bovinos/microbiologia , Paratuberculose/economia , Animais , Bovinos , Doenças dos Bovinos/economia , Indústria de Laticínios , Cadeias de Markov , Modelos Econômicos , Escócia
17.
Prev Vet Med ; 145: 7-15, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903877

RESUMO

Small-scale keepers are less likely to engage with production organisations and may therefore be less aware of legislation, rules and biosecurity practices which are implemented in the livestock sector. Their role in the transmission of endemic and exotic diseases is not well studied, but is believed to be important. The authors use small-scale pig keepers in Scotland as an example of how important small-scale livestock keepers might be for national biosecurity. In Scotland more than two thirds of pig producers report that they keep less than 10 pigs, meaning that biosecurity practices and pig health status on a substantial number of holdings are largely unknown; it is considered important to fill this knowledge gap. A questionnaire was designed and implemented in order to gather some of this information. The questionnaire comprised a total of 37 questions divided into seven sections (location of the enterprise, interest in pigs, details about the pig enterprise, marketing of pigs, transport of pigs, pig husbandry, and pig health/biosecurity). Over 610 questionnaires were sent through the post and the questionnaire was also available online. The questionnaire was implemented from June to October 2013 and 135 questionnaires were returned by target respondents. The responses for each question are discussed in detail in this paper. Overall, our results suggest that the level of disease identified by small-scale pig keepers is low but the majority of the small-scale pig keepers are mixed farms, with associated increased risk for disease transmission between species. Almost all respondents implemented at least one biosecurity measure, although the measures taken were not comprehensive in the majority of cases. Overall as interaction between small-scale keepers and commercial producers exists in Scotland the former can pose a risk for commercial production. This investigation fills gaps in knowledge which will allow industry stakeholders and policy makers to adapt their current disease programmes and contingency plans to the reality of small-scale pig-keeping enterprises' health and biosecurity status. We predict that some conclusions from this work will be relevant to countries with similar pig production systems and importantly some of these findings will relate to small-scale producers in other livestock sectors.


Assuntos
Criação de Animais Domésticos/normas , Doenças dos Suínos/prevenção & controle , Criação de Animais Domésticos/métodos , Animais , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Abrigo para Animais/normas , Gado , Fatores de Risco , Escócia , Inquéritos e Questionários , Suínos
18.
Sci Rep ; 7: 42992, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28225040

RESUMO

Classical swine fever (CSF) is a notifiable, highly contagious viral disease of swine which results in severe welfare and economic consequences in affected countries. To improve preparedness, it is critical to have some understanding of how CSF would spread should it be introduced. Based on the data recorded during the 2000 epidemic of CSF in Great Britain (GB), a spatially explicit, premises-based model was developed to explore the risk of CSF spread in GB. We found that large outbreaks of CSF would be rare and generated from a limited number of areas in GB. Despite the consistently low vulnerability of the British swine industry to large CSF outbreaks, we identified concerns with respect to the role played by the non-commercial sector of the industry. The model further revealed how various epidemiological features may influence the spread of CSF in GB, highlighting the importance of between-farm biosecurity in preventing widespread dissemination of the virus. Knowledge of factors affecting the risk of spread are key components for surveillance planning and resource allocation, and this work provides a valuable stepping stone in guiding policy on CSF surveillance and control in GB.


Assuntos
Peste Suína Clássica/epidemiologia , Animais , Epidemias , Indústrias , Modelos Teóricos , Risco , Suínos , Reino Unido/epidemiologia
19.
PLoS One ; 11(8): e0161990, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27564417

RESUMO

Statutory recording of carcass lesions at the abattoir may have significant potential as a resource for surveillance of livestock populations. Food Standards Agency (FSA) data in Great Britain are not currently used for surveillance purposes. There are concerns that the sensitivity of detection, combined with other issues, may make the outputs unreliable. In this study we postulate that FSA data could be used for surveillance purposes. To test this we compared FSA data with BPHS (a targeted surveillance system of slaughtered pigs) and laboratory diagnostic scanning surveillance (FarmFile) data, from mid-2008 to mid-2012, for respiratory conditions and tail bite lesions in pigs at population level. We also evaluated the agreement/correlation at batch level between FSA and BPHS inspections in four field trials during 2013. Temporal trends and regional differences at population level were described and compared using logistic regression models. Population temporal analysis showed an increase in respiratory disease in all datasets but with regional differences. For tail bite, the temporal trend and monthly patterns were completely different between the datasets. The field trials were run in three abattoirs and included 322 batches. Pearson's correlation and Cohen's kappa tests were used to assess correlation/agreement between inspections systems. It was moderate to strong for high prevalence conditions but slight for low prevalence conditions. We conclude that there is potential to use FSA data as a component of a surveillance system to monitor temporal trends and regional differences of chosen indicators at population level. At producer level and for low prevalence conditions it needs further improvement. Overall a number of issues still need to be addressed in order to provide the pig industry with the confidence to base their decisions on these FSA inspection data. Similar conclusions, at national level, may apply to other livestock sectors but require further evaluation of the inspection and data collection processes.


Assuntos
Matadouros , Vigilância da População/métodos , Bem-Estar do Animal , Animais , Inspeção de Alimentos/métodos , Gado , Sus scrofa , Suínos , Doenças dos Suínos , Reino Unido
20.
Sci Rep ; 6: 20258, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833241

RESUMO

Modelling is an important component of contingency planning and control of disease outbreaks. Dynamic network models are considered more useful than static models because they capture important dynamic patterns of farm behaviour as evidenced through animal movements. This study evaluates the usefulness of a dynamic network model of swine fever to predict pre-detection spread via movements of pigs, when there may be considerable uncertainty surrounding the time of incursion of infection. It explores the utility and limitations of animal movement data to inform such models and as such, provides some insight into the impact of improving traceability through real-time animal movement reporting and the use of electronic animal movement databases. The study concludes that the type of premises and uncertainty of the time of disease incursion will affect model accuracy and highlights the need for improvements in these areas.


Assuntos
Bases de Dados Factuais , Surtos de Doenças , Modelos Teóricos , Vigilância em Saúde Pública , Doenças dos Suínos/epidemiologia , Animais , Escócia/epidemiologia , Suínos , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...