Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1333, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288569

RESUMO

Contrasting theories exist regarding how Norway spruce (Picea abies) recolonized Fennoscandia after the last glaciation and both early Holocene establishments from western microrefugia and late Holocene colonization from the east have been postulated. Here, we show that Norway spruce was present in southern Fennoscandia as early as 14.7 ± 0.1 cal. kyr BP and that the millennia-old clonal spruce trees present today in central Sweden likely arrived with an early Holocene migration from the east. Our findings are based on ancient sedimentary DNA from multiple European sites (N = 15) combined with nuclear and mitochondrial DNA analysis of ancient clonal (N = 135) and contemporary spruce forest trees (N = 129) from central Sweden. Our other findings imply that Norway spruce was present shortly after deglaciation at the margins of the Scandinavian Ice Sheet, and support previously disputed finds of pollen in southern Sweden claiming spruce establishment during the Lateglacial.


Assuntos
Picea , Pinus , DNA Mitocondrial/genética , Florestas , Noruega , Picea/genética , Árvores/genética
2.
Evolution ; 65(4): 1181-94, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21073451

RESUMO

Genetic and morphological similarity between populations separated by large distances may be caused by frequent long-distance dispersal or retained ancestral polymorphism. The frequent lack of differentiation between disjunct conspecific moss populations on different continents has traditionally been explained by the latter model, and has been cited as evidence that many or most moss species are extremely ancient and slowly diverging. We have studied intercontinental differentiation in the amphi-Atlantic peat moss Sphagnum angermanicum using 23 microsatellite markers. Two major genetic clusters are found, both of which occur throughout the distributional range. Patterns of genetic structuring and overall migration patterns suggest that the species probably originated in North America, and seems to have been established twice in Northern Europe during the past 40,000 years. We conclude that similarity between S. angermanicum populations on different continents is not the result of ancient vicariance and subsequent stasis. Rather, the observed pattern can be explained by multiple long-distance dispersal over limited evolutionary time. The genetic similarity can also partly be explained by incomplete lineage sorting, but this appears to be caused by the short time since separation. Our study adds to a growing body of evidence suggesting that Sphagnum, constituting a significant part of northern hemisphere biodiversity, may be more evolutionary dynamic than previously assumed.


Assuntos
Demografia , Evolução Molecular , Genética Populacional , Modelos Genéticos , Filogenia , Sphagnopsida/genética , Teorema de Bayes , Primers do DNA/genética , Fluxo Gênico/genética , Funções Verossimilhança , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , América do Norte , Noruega , Densidade Demográfica , Suécia
3.
New Phytol ; 181(1): 208-217, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18811618

RESUMO

Here, it was investigated whether Sphagnum species have adjusted their nitrogen (N) uptake in response to the anthropogenic N deposition that has drastically altered N-limited ecosystems, including peatlands, worldwide. A lawn species, Sphagnum balticum, and a hummock species, Sphagnum fuscum, were collected from three peatlands along a gradient of N deposition (2, 8 and 12 kg N ha(-1) yr(-1)). The mosses were subjected to solutions containing a mixture of four N forms. In each solution one of these N forms was labeled with (15)N (namely (15)NH(+)(4), (15)NO(-)(3) and the amino acids [(15)N]alanine (Ala) and [(15)N]glutamic acid (Glu)). It was found that for both species most of the N taken up was from , followed by Ala, Glu, and very small amounts from NO(-)(3). At the highest N deposition site N uptake was reduced, but this did not prevent N accumulation as free amino acids in the Sphagnum tissues. The reduced N uptake may have been genetically selected for under the relatively short period with elevated N exposure from anthropogenic sources, or may have been the result of plasticity in the Sphagnum physiological response. The negligible Sphagnum NO(-)(3) uptake may make any NO(-)(3) deposited readily available to co-occurring vascular plants.


Assuntos
Adaptação Fisiológica , Poluição do Ar , Nitrogênio/metabolismo , Poluentes do Solo , Sphagnopsida/metabolismo , Aminoácidos/metabolismo , Nitratos/metabolismo , Compostos de Amônio Quaternário/metabolismo , Solo , Suécia
4.
Ecology ; 88(2): 454-64, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17479763

RESUMO

The aim of this study was to detect vegetation change and to examine trophic interactions in a Sphagnum-dominated mire in response to raised temperature and nitrogen (N) addition. A long-term global-change experiment was established in 1995, with monthly additions of N (30 kg x ha(-1) x yr(-1)) and sulfur (20 kg x ha(-1) x yr(-1)) during the vegetation period. Mean air temperature was raised by 3.6 degrees C with warming chambers. Vegetation responses were negligible for all treatments for the first four years, and no sulfur effect was seen during the course of the experiment. However, after eight years of continuous treatments, the closed Sphagnum carpet was drastically reduced from 100% in 1995 down to 41%, averaged over all N-treated plots. Over the same period, total vascular plant cover (of the graminoid Eriophorum vaginatum and the two dwarf-shrubs Andromeda polifolia and Vaccinium oxycoccos) increased from 24% to an average of 70% in the N plots. Nitrogen addition caused leaf N concentrations to rise in the two dwarf-shrubs, while for E. vaginatum, leaf N remained unchanged, indicating that the graminoid to a larger extent than the dwarf-shrubs allocated supplemented N to growth. Concurrent with foliar N accumulation of the two dwarf-shrubs, we observed increased disease incidences caused by parasitic fungi, with three species out of 16 showing a significant increase. Warming caused a significant decrease in occurrence of three parasitic fungal species. In general, decreased disease incidences were found in temperature treatments for A. polifolia and in plots without N addition for V. oxycoccos. The study demonstrates that both bryophytes and vascular plants at boreal mires, only receiving background levels of nitrogen of about 2 kg x ha(-1) x yr(-1), exhibit a time lag of more than five years in response to nitrogen and temperature rise, emphasizing the need for long-term experiments. Moreover, it shows that trophic interactions are likely to differ markedly in response to climate change and increased N deposition, and that these interactions might play an important role in controlling the change in mire vegetation composition, with implications for both carbon sequestration and methane emission.


Assuntos
Temperatura Alta , Magnoliopsida/fisiologia , Nitrogênio/fisiologia , Sphagnopsida/fisiologia , Áreas Alagadas , Carbono/metabolismo , Clima , Cyperaceae/metabolismo , Cyperaceae/fisiologia , Ericaceae/metabolismo , Ericaceae/microbiologia , Ericaceae/fisiologia , Cadeia Alimentar , Fungos/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Magnoliopsida/microbiologia , Nitrogênio/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Suécia , Fatores de Tempo , Vaccinium/metabolismo , Vaccinium/microbiologia , Vaccinium/fisiologia
5.
Am J Bot ; 92(10): 1684-90, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21646085

RESUMO

Genetic variation in the expanding moss species Pogonatum dentatum was studied using intersimple sequence repeat (ISSR) markers. The genetic consequences of range expansion were studied by comparing source populations in a mountain area with populations from a recently colonized lowland area in Sweden. Indices of genetic variation show slightly lower number of alleles per locus in the lowlands and a similar gene diversity in both areas. Three of four lowland populations had evidence of a recently passed bottleneck. Considerably higher haplotype diversity was found in the recently colonized lowlands compared to source populations in the mountains. Patterns of allelic diversity suggest that P. dentatum experiences loss of genetic variation through founder effects and genetic drift when expanding its distribution range. Higher haplotypic diversity, less linkage disequilibrium, and fewer compatible loci indicate that sexual recombination is relatively more important in the lowlands compared to the mountains. A likely explanation is higher success of establishment from spores in the lowlands, while clonal propagation predominates in the mountains. Less genetic differentiation among lowland populations indicates more gene flow in the lowland area, involving more spores and/or fragments moving among populations.

6.
New Phytol ; 163(2): 349-359, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33873612

RESUMO

• Growth and production of Sphagnum balticum and interspecific competition between S. balticum and either Sphagnum lindbergii or transplanted Sphagnum papillosum, were studied in a 4-yr field experiment in a poor fen. • Temperature and influxes of nitrogen (N) and sulphur (S) were manipulated in a factorial design. The mean daily air temperature was increased by 3.6°C with glasshouse enclosures. Nitrogen loads were increased 15-fold and S loads seven-fold compared with the natural loads up to influxes observed during the 1980s in south-western Sweden. • Production of S. balticum decreased with increasing temperature and N-influx. The N treatment significantly reduced the incremental length of S. balticum, and this reduction was reinforced with time (24% in the first year to 51% in the final year). The area covered by S. lindbergii changed with time in all treatments and S. papillosum area increased significantly in the temperature-treated plots. • Growth, production and competitive patterns change if the environmental conditions change. Increased N deposition and raised temperature may transform mires currently dominated by Sphagnum into vascular-plant-dominated mires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...