Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 14(2): 1609-1622, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31794180

RESUMO

Antimicrobial resistance stimulates the search for antimicrobial forms that may be less subject to acquired resistance. Here we report a conceptual design of protein pseudocapsids exhibiting a broad spectrum of antimicrobial activities. Unlike conventional antibiotics, these agents are effective against phenotypic bacterial variants, while clearing "superbugs" in vivo without toxicity. The design adopts an icosahedral architecture that is polymorphic in size, but not in shape, and that is available in both l and d epimeric forms. Using a combination of nanoscale and single-cell imaging we demonstrate that such pseudocapsids inflict rapid and irreparable damage to bacterial cells. In phospholipid membranes they rapidly convert into nanopores, which remain confined to the binding positions of individual pseudocapsids. This mechanism ensures precisely delivered influxes of high antimicrobial doses, rendering the design a versatile platform for engineering structurally diverse and functionally persistent antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Engenharia de Proteínas , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Tamanho da Partícula , Dobramento de Proteína , Propriedades de Superfície
2.
Chem Commun (Camb) ; 54(84): 11929-11932, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30285017

RESUMO

Methodologies to conjugate proteins to property-enhancing entities are highly sought after. We report a remarkably simple strategy for conjugating proteins bearing accessible cysteines to unprotected peptides containing a Cys(Scm) protecting group, which is introduced on-resin via a Cys(Acm) building block. The peptides employed for this proof of principle study are highly varied and structurally diverse, and undergo multiple on-resin decoration steps prior to conjugation. The methodology was applied to three different proteins, and proved to be efficient and site-selective. This twist on protecting group chemistry has led to a novel and generally applicable strategy for crossed-disulfide formation between proteins and peptides.


Assuntos
Ácido Fólico/química , Peptídeos/metabolismo , Proteínas/metabolismo , Western Blotting , Cisteína/química , Eletroforese em Gel de Poliacrilamida , Estrutura Molecular , Oxirredução , Peptídeos/química , Proteínas/química
3.
Angew Chem Int Ed Engl ; 56(41): 12702-12707, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28805276

RESUMO

A mild visible-light-mediated strategy for cysteine arylation is presented. The method relies on the use of eosin Y as a metal-free photocatalyst and aryldiazonium salts as arylating agents. The reaction can be significantly accelerated in a microflow reactor, whilst allowing the in situ formation of the required diazonium salts. The batch and flow protocol described herein can be applied to obtain a broad series of arylated cysteine derivatives and arylated cysteine-containing dipeptides. Moreover, the method was applied to the chemoselective arylation of a model peptide in biocompatible reaction conditions (room temperature, phosphate-buffered saline (PBS) buffer) within a short reaction time.

4.
Org Biomol Chem ; 14(34): 8002-13, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27461374

RESUMO

The pharmaceutical market has largely been dominated by small molecule drugs; however, larger biomolecules have recently become important contenders. Of these biomolecules, protein and peptide therapeutics are proving useful due to their often improved pharmacokinetic properties. In many circumstances, functionalisation of the protein or peptide therapeutics results in performance enhancement, and various methodologies are applied. In addition, introducing unnatural amino acids for structural reinforcement via chemical modification is also common. These strategies are discussed in this review.


Assuntos
Descoberta de Drogas/métodos , Peptídeos/química , Peptídeos/uso terapêutico , Proteínas/química , Proteínas/uso terapêutico , Humanos , Espaço Intracelular/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo
5.
Chembiochem ; 17(7): 529-53, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26789551

RESUMO

The modification of proteins with non-protein entities is important for a wealth of applications, and methods for chemically modifying proteins attract considerable attention. Generally, modification is desired at a single site to maintain homogeneity and to minimise loss of function. Though protein modification can be achieved by targeting some natural amino acid side chains, this often leads to ill-defined and randomly modified proteins. Amongst the natural amino acids, cysteine combines advantageous properties contributing to its suitability for site-selective modification, including a unique nucleophilicity, and a low natural abundance--both allowing chemo- and regioselectivity. Native cysteine residues can be targeted, or Cys can be introduced at a desired site in a protein by means of reliable genetic engineering techniques. This review on chemical protein modification through cysteine should appeal to those interested in modifying proteins for a range of applications.


Assuntos
Cisteína/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Cisteína/química , Maleimidas/química , Maleimidas/metabolismo , Proteínas/química
6.
Nat Commun ; 5: 4388, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25073737

RESUMO

The ability to conditionally direct antibodies is a potentially powerful application for Synthetic Biology in Medicine. Here we show that control of antibody binding through site-specific, chemical phosphorylation of a recognition domain creates a 'gated' antibody (Ab). This displays a crude Boolean logic where binding is induced in an enzyme-AND-antigen dependent manner. This 'AND-Ab' is therefore active only in the presence of two biomarker inputs: the simultaneous expression of a (cell surface) antigen and secreted enzyme to generate function in vitro, on cells and in mammalian tissue. Such gated Abs, either alone or in combination, could allow the application of logic strategies to enhance precision in biological interrogation, modulation and in therapy.


Assuntos
Anticorpos/genética , Anticorpos/metabolismo , Formação de Anticorpos/fisiologia , Técnicas de Química Sintética/métodos , Animais , Formação de Anticorpos/genética , Ensaio de Imunoadsorção Enzimática , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Muramidase/metabolismo , Fosforilação , Ligação Proteica
7.
Biomaterials ; 32(15): 3712-20, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21353303

RESUMO

The ability to modify peptide- and protein-based biomaterials selectively under mild conditions and in aqueous buffers is essential to the development of certain areas of bionanotechnology, tissue engineering and synthetic biology. Here we show that Self-Assembling peptide Fibers (SAFs) can incorporate multiple modified peptides non-covalently, stoichiometrically and without disrupting their structure or stability. The modified peptides contain groups suitable for post-assembly click reactions in water, namely azides and alkenes. Labeling of these groups is achieved using the orthogonal Cu(I)-catalyzed azide-alkyne and photoinitiated thiol-ene reactions, respectively. Functionalization is demonstrated through the conjugation of biotin followed by streptavidin-nanogold particles, or rhodamine, and visualized by electron and light microscopy, respectively. This has been shown for fibers harboring either or both of the modified peptides. Furthermore, the amounts of each modified peptide in the fibers can be varied with concomitant changes in decoration. This approach allows the design and assembly of fibers with multiple functional components, paving the way for the development of multi-component functionalized systems.


Assuntos
Materiais Biocompatíveis/química , Peptídeos/química , Catálise , Química Click , Cobre/química , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...