Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1465, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368419

RESUMO

Protein-modifying enzymes regulate the dynamics of myriad post-translational modification (PTM) substrates. Precise characterization of enzyme-substrate associations is essential for the molecular basis of cellular function and phenotype. Methods for direct capturing global substrates of protein-modifying enzymes in living cells are with many challenges, and yet largely unexplored. Here, we report a strategy to directly capture substrates of lysine-modifying enzymes via PTM-acceptor residue crosslinking in living cells, enabling global profiling of substrates of PTM-enzymes and validation of PTM-sites in a straightforward manner. By integrating enzymatic PTM-mechanisms, and genetically encoding residue-selective photo-crosslinker into PTM-enzymes, our strategy expands the substrate profiles of both bacterial and mammalian lysine acylation enzymes, including bacterial lysine acylases PatZ, YiaC, LplA, TmcA, and YjaB, as well as mammalian acyltransferases GCN5 and Tip60, leading to discovery of distinct yet functionally important substrates and acylation sites. The concept of direct capturing substrates of PTM-enzymes via residue crosslinking may extend to the other types of amino acid residues beyond lysine, which has the potential to facilitate the investigation of diverse types of PTMs and substrate-enzyme interactive proteomics.


Assuntos
Lisina , Proteínas , Animais , Lisina/metabolismo , Proteínas/metabolismo , Acilação , Proteômica/métodos , Processamento de Proteína Pós-Traducional , Mamíferos/metabolismo
2.
Methods Mol Biol ; 2676: 131-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37277629

RESUMO

Posttranslational modifications (PTMs) of lysine residues are major regulators of gene expression, protein-protein interactions, and protein localization and degradation. Histone lysine benzoylation is a recently identified epigenetic marker associated with active transcription, which has physiological relevance distinct from histone acetylation and can be regulated by debenzoylation of sirtuin 2 (SIRT2). Herein, we provide a protocol for the incorporation of benzoyllysine and fluorinated benzoyllysine into full-length histone proteins, which further serve as benzoylated histone probes with NMR or fluorescence signal for investigating the dynamics of SIRT2-mediated debenzoylation.


Assuntos
Aminoácidos , Lisina , Lisina/metabolismo , Aminoácidos/metabolismo , Histonas/metabolismo , Sirtuína 2/genética , Processamento de Proteína Pós-Traducional , Acetilação
3.
Nat Chem ; 15(6): 803-814, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37106095

RESUMO

Precise dissection of DNA-protein interactions is essential for elucidating the recognition basis, dynamics and gene regulation mechanism. However, global profiling of weak and dynamic DNA-protein interactions remains a long-standing challenge. Here, we establish the light-induced lysine (K) enabled crosslinking (LIKE-XL) strategy for spatiotemporal and global profiling of DNA-protein interactions. Harnessing unique abilities to capture weak and transient DNA-protein interactions, we demonstrate that LIKE-XL enables the discovery of low-affinity transcription-factor/DNA interactions via sequence-specific DNA baits, determining the binding sites for transcription factors that have been previously unknown. More importantly, we successfully decipher the dynamics of the transcription factor subproteome in response to drug treatment in a time-resolved manner, and find downstream target transcription factors from drug perturbations, providing insight into their dynamic transcriptional networks. The LIKE-XL strategy offers a complementary method to expand the DNA-protein profiling toolbox and map accurate DNA-protein interactomes that were previously inaccessible via non-covalent strategies, for better understanding of protein function in health and disease.


Assuntos
DNA , Fatores de Transcrição , Fatores de Transcrição/química , DNA/química , Aminas/química , Ligação Proteica , Reagentes de Ligações Cruzadas/química
4.
ACS Chem Biol ; 16(11): 2560-2569, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34618427

RESUMO

Histone posttranslational modifications (PTMs) are vital epigenetic regulators in many fundamental cell signaling pathways and diverse biological processes. Histone lysine benzoylation is a recently identified epigenetic mark associated with active transcription; however, it remains to be explored. Herein, we first report the genetic encoding of benzoyllysine and fluorinated benzoyllysines into full-length histone proteins in a site-specific manner in live cells, based on our rationally designed synthetase and fine-integrated fluorine element into benzoyllysines. The incorporated unnatural amino acids integrating unique features were demonstrated as versatile probes for investigating histone benzoylation under biological environments, conferring multiplex signals such as 19F NMR spectra with chemical clarity and fluorescence signals for benzoylation. Moreover, the site specifically incorporated lysine benzoylation within native full-length histone proteins revealed distinct dynamics of debenzoylation in the presence of debenzoylase sirtuin 2 (SIRT2). Our developed strategy for genetic encoding of benzoyllysines offers a general and novel approach to gain insights into interactions of site-specific histone benzoylation modifications with interactomes and molecular mechanisms in physiological settings, which could not be accessible with fragment histone peptides. This versatile chemical tool enables a direct and new avenue to explore benzoylation, interactions, and histone epigenetics, which will provide broad utilities in chemical biology, protein science, and basic biology research.


Assuntos
Ácido Benzoico/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Sondas Moleculares/metabolismo , Humanos
5.
RSC Adv ; 11(4): 2235-2241, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35424183

RESUMO

Chemical modification of proteins has emerged as a powerful tool to realize enormous applications, such as development of novel biologics and functional studies of individual protein. We report a light-induced lysine-selective native protein conjugation approach via indazolone formation, conferring reliable chemoselectivity, excellent efficiency, temporal control and biocompatibility under operationally simple and mild conditions, in vitro and in living systems. This straightforward protocol demonstrates the generality and accessibility for direct and rapid functionalization of diverse native proteins, which suggests a new avenue of great importance to bioconjugation, medicinal chemistry and chemical biology.

6.
Nat Commun ; 11(1): 5472, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122644

RESUMO

The advent of click chemistry has had a profound impact on many fields and fueled a need for reliable reactions to expand the click chemistry toolkit. However, developing new systems to fulfill the click chemistry criteria remains highly desirable yet challenging. Here, we report the development of light-induced primary amines and o-nitrobenzyl alcohols cyclization (PANAC) as a photoclick reaction via primary amines as direct click handle, to rapid and modular functionalization of diverse small molecules and native biomolecules. With intrinsic advantages of temporal control, good biocompatibility, reliable chemoselectivity, excellent efficiency, readily accessible reactants, operational simplicity and mild conditions, the PANAC photoclick is robust for direct diversification of pharmaceuticals and biorelevant molecules, lysine-specific modifications of unprotected peptides and native proteins in vitro, temporal profiling of endogenous kinases and organelle-targeted labeling in living systems. This strategy provides a versatile platform for organic synthesis, bioconjugation, medicinal chemistry, chemical biology and materials science.

7.
RSC Adv ; 9(23): 13249-13253, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35520758

RESUMO

Indazolone derivatives exhibit a wide range of biological and pharmaceutical properties. We report a rapid and efficient approach to provide structurally diverse 2-N-substituted indazolones via photochemical cyclization in aqueous media at room temperature. This straightforward protocol is halide compatible for the synthesis of halogenated indazolones bearing a broad scope of substrates, which suggests a new avenue of great importance to medicinal chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...