Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 71: 103116, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479222

RESUMO

Oxidative stress plays an important role in the pathogenesis of acute lung injury (ALI). As a typical post-translational modification triggered by oxidative stress, protein S-glutathionylation (PSSG) is regulated by redox signaling pathways and plays diverse roles in oxidative stress conditions. In this study, we found that GSTP downregulation exacerbated LPS-induced injury in human lung epithelial cells and in mice ALI models, confirming the protective effect of GSTP against ALI both in vitro and in vivo. Additionally, a positive correlation was observed between total PSSG level and GSTP expression level in cells and mice lung tissues. Further results demonstrated that GSTP inhibited KEAP1-NRF2 interaction by promoting PSSG process of KEAP1. By the integration of protein mass spectrometry, molecular docking, and site-mutation validation assays, we identified C434 in KEAP1 as the key PSSG site catalyzed by GSTP, which promoted the dissociation of KEAP1-NRF2 complex and activated the subsequent anti-oxidant genes. In vivo experiments with AAV-GSTP mice confirmed that GSTP inhibited LPS-induced lung inflammation by promoting PSSG of KEAP1 and activating the NRF2 downstream antioxidant pathways. Collectively, this study revealed the novel regulatory mechanism of GSTP in the anti-inflammatory function of lungs by modulating PSSG of KEAP1 and the subsequent KEAP1/NRF2 pathway. Targeting at manipulation of GSTP level or activity might be a promising therapeutic strategy for oxidative stress-induced ALI progression.


Assuntos
Lesão Pulmonar Aguda , Fator 2 Relacionado a NF-E2 , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
2.
Antioxidants (Basel) ; 13(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275657

RESUMO

Myeloperoxidase (MPO) is a heme-containing peroxidase, mainly expressed in neutrophils and, to a lesser extent, in monocytes. MPO is known to have a broad bactericidal ability via catalyzing the reaction of Cl- with H2O2 to produce a strong oxidant, hypochlorous acid (HOCl). However, the overproduction of MPO-derived oxidants has drawn attention to its detrimental role, especially in diseases characterized by acute or chronic inflammation. Broadly speaking, MPO and its derived oxidants are involved in the pathological processes of diseases mainly through the oxidation of biomolecules, which promotes inflammation and oxidative stress. Meanwhile, some researchers found that MPO deficiency or using MPO inhibitors could attenuate inflammation and tissue injuries. Taken together, MPO might be a promising target for both prognostic and therapeutic interventions. Therefore, understanding the role of MPO in the progress of various diseases is of great value. This review provides a comprehensive analysis of the diverse roles of MPO in the progression of several diseases, including cardiovascular diseases (CVDs), neurodegenerative diseases, cancers, renal diseases, and lung diseases (including COVID-19). This information serves as a valuable reference for subsequent mechanistic research and drug development.

3.
J Ethnopharmacol ; 321: 117532, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048892

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Poria cocos (Schw.) Wolf (Polyporaceae, P.cocos), which is born on the pine root, has a history of more than two thousand years of medicine in China. P.cocos was first recorded in the Shennong's Herbal Classic, studies have proved its lipid-lowering effect. AIM OF STUDY: The aim of study was to investigate the underlying mechanism of P.cocos extract on hyperlipidemia. MATERIALS AND METHODS: Male Sprague-Dawley (SD) rats aged 9-12 weeks were intraperitoneally (IP) injected with Triton-WR 1339 to establish an acute hyperlipidemia model. At 0 h and 20 h after the model was established, low and high doses of P.cocos extract or simvastatin were given twice. After 48 h, the rats were sacrificed, and liver and serum samples were collected for analysis. The cell model was constructed by treating L02 cells with 1% fat emulsion-10% FBS-RPMI 1640 medium for 48 h. At the same time, low and high doses of P.cocos extract and simvastatin were administered. Oil red O staining was used to evaluate the lipid accumulation in the cells, and H&E staining was used to evaluate the liver lesions of rats. Real-time quantitative PCR and western blotting were used to detect the expressions of lipid metabolism-related genes. RESULTS: P.cocos extract relieved lipid accumulation in vitro and alleviated hyperlipidemia in vivo. Both gene and protein expressions of peroxisome proliferator-activated receptor α (PPARα) were shown to be up-regulated by P.cocos extract. Additionally, P.cocos extract down-regulated the expressions of fatty acid synthesis-related genes sterol regulatory element-binding protein-1 (SREBP-1), Acetyl-CoA Carboxylase 1 (ACC1) and fatty acid synthase (FAS), while up-regulated the expressions of cholesterol metabolism-related genes liver X receptor-α (LXRα), ATP-binding cassette transporter A1 (ABCA1), cholesterol 7alpha-hydroxylase (CYP7A1) and low density lipoprotein receptor (LDLR), which were reversed by the treatment with the PPARα inhibitor GW6471. CONCLUSION: P.cocos extract ameliorates hyperlipidemia and lipid accumulation by regulating cholesterol homeostasis in hepatocytes through PPARα pathway. This study provides evidence that supplementation with P.cocos extract could be a potential strategy for the treatment of hyperlipidemia.


Assuntos
Hiperlipidemias , Wolfiporia , Lobos , Ratos , Masculino , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , Lobos/metabolismo , Ratos Sprague-Dawley , Fígado , Metabolismo dos Lipídeos , Hiperlipidemias/metabolismo , Hepatócitos/metabolismo , Lipídeos , Colesterol/metabolismo , Homeostase , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico
4.
Chem Res Toxicol ; 36(9): 1483-1494, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37622730

RESUMO

Genipin (GP) is the reactive aglycone of geniposide, the main component of traditional Chinese medicine Gardeniae Fructus (GF). The covalent binding of GP to cellular proteins is suspected to be responsible for GF-induced hepatotoxicity and inhibits drug-metabolizing enzyme activity, although the mechanisms remain to be clarified. In this study, the mechanisms of GP-induced human hepatic P450 inactivation were systemically investigated. Results showed that GP inhibited all tested P450 isoforms via distinct mechanisms. CYP2C19 was directly and irreversibly inactivated without time dependency. CYP1A2, CYP2C9, CYP2D6, and CYP3A4 T (testosterone as substrate) showed time-dependent and mixed-type inactivation, while CYP2B6, CYP2C8, and CYP3A4 M (midazolam as substrate) showed time-dependent and irreversible inactivation. For CYP3A4 inactivation, the kinact/KI values in the presence or absence of NADPH were 0.26 or 0.16 min-1 mM-1 for the M site and 0.62 or 0.27 min-1 mM-1 for the T site. Ketoconazole and glutathione (GSH) both attenuated CYP3A4 inactivation, suggesting an active site occupation- and reactive metabolite-mediated inactivation mechanism. Moreover, the in vitro and in vivo formation of a P450-dependent GP-S-GSH conjugate indicated the involvement of metabolic activation and thiol residues binding in GP-induced enzyme inactivation. Lastly, molecular docking analysis simulated potential binding sites and modes of GP association with CYP2C19 and CYP3A4. We propose that direct covalent binding and metabolic activation mediate GP-induced P450 inactivation and alert readers to potential risk factors for GP-related clinical drug-drug interactions.


Assuntos
Citocromo P-450 CYP3A , Gardenia , Humanos , Citocromo P-450 CYP2C19 , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450
5.
J Agric Food Chem ; 71(5): 2399-2410, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705628

RESUMO

Genipin (GP), the reactive metabolite of geniposide (GE), is responsible for GE-induced hepatotoxicity. As a potential detoxification pathway, the inactivation of GP by glutathione S-transferases (GSTs) has not yet been characterized. In this study, the thiol-GSH conjugates of GP, M532-1 and M532-2 were first identified and the catalytic activities of GSTs were investigated both in vitro and in vivo. GSTA1-1 and GSTA4-4 showed high activity in the formation of both thiol-GSH conjugates, whereas GSTA4-4 specifically catalyzed M532-2 formation in vitro. The active GST isoforms protect against alkylation of N-acetylcysteine (NAC), a classic model nucleophile. GST inhibition attenuated M532-1 formation in rat bile, confirming the in vivo catalytic role of GSTs. In conclusion, this study demonstrated the inactivation of GP by GSTs and implied that interindividual variability of GSTs may be a risk factor for susceptibility to GE-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado , Ratos , Animais , Fígado/metabolismo , Glutationa Transferase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Compostos de Sulfidrila/metabolismo
6.
Antioxidants (Basel) ; 9(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321763

RESUMO

Myeloperoxidase (MPO) is involved in the development of many chronic inflammatory diseases, in addition to its key role in innate immune defenses. This is attributed to the excessive production of hypochlorous acid (HOCl) by MPO at inflammatory sites, which causes tissue damage. This has sparked wide interest in the development of therapeutic approaches to prevent HOCl-induced cellular damage including supplementation with thiocyanate (SCN-) as an alternative substrate for MPO. In this study, we used an enzymatic system composed of glucose oxidase (GO), glucose, and MPO in the absence and presence of SCN-, to investigate the effects of generating a continuous flux of oxidants on macrophage cell function. Our studies show the generation of hydrogen peroxide (H2O2) by glucose and GO results in a dose- and time-dependent decrease in metabolic activity and cell viability, and the activation of stress-related signaling pathways. Interestingly, these damaging effects were attenuated by the addition of MPO to form HOCl. Supplementation with SCN-, which favors the formation of hypothiocyanous acid, could reverse this effect. Addition of MPO also resulted in upregulation of the antioxidant gene, NAD(P)H:quinone acceptor oxidoreductase 1. This study provides new insights into the role of MPO in the modulation of macrophage function, which may be relevant to inflammatory pathologies.

7.
Redox Biol ; 36: 101666, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32781424

RESUMO

Myeloperoxidase (MPO) is a vital component of the innate immune system, which produces the potent oxidant hypochlorous acid (HOCl) to kill invading pathogens. However, an overproduction of HOCl during chronic inflammatory conditions causes damage to host cells, which promotes disease, including atherosclerosis. As such, there is increasing interest in the use of thiocyanate (SCN-) therapeutically to decrease inflammatory disease, as SCN- is the favoured substrate for MPO, and a potent competitive inhibitor of HOCl formation. Use of SCN- by MPO forms hypothiocyanous acid (HOSCN), which can be less damaging to mammalian cells. In this study, we examined the ability of SCN- to modulate damage to macrophages induced by HOCl, which is relevant to lesion formation in atherosclerosis. Addition of SCN- prevented HOCl-mediated cell death, altered the extent and nature of thiol oxidation and the phosphorylation of mitogen activated protein kinases. These changes were dependent on the concentration of SCN- and were observed in some cases, at a sub-stoichiometric ratio of SCN-: HOCl. Co-treatment with SCN- also modulated HOCl-induced perturbations in the expression of various antioxidant and inflammatory genes. In general, the data reflect the conversion of HOCl to HOSCN, which can induce reversible modifications that are repairable by cells. However, our data also highlight the ability of HOSCN to increase pro-inflammatory gene expression and cytokine/chemokine release, which may be relevant to the use of SCN- therapeutically in atherosclerosis. Overall, this study provides further insight into the cellular pathways by which SCN- could exert protective effects on supplementation to decrease the development of chronic inflammatory diseases, such as atherosclerosis.


Assuntos
Peroxidase , Tiocianatos , Animais , Linhagem Celular , Ácido Hipocloroso/farmacologia , Macrófagos , Oxidantes/farmacologia , Tiocianatos/farmacologia
8.
Redox Biol ; 36: 101602, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32570189

RESUMO

A host of chronic inflammatory diseases are accelerated by the formation of the powerful oxidant hypochlorous acid (HOCl) by myeloperoxidase (MPO). In the presence of thiocyanate (SCN-), the production of HOCl by MPO is decreased in favour of the formation of a milder oxidant, hypothiocyanous acid (HOSCN). The role of HOSCN in disease has not been fully elucidated, though there is increasing interest in using SCN- therapeutically in different disease settings. Unlike HOCl, HOSCN can be detoxified by thioredoxin reductase, and reacts selectively with thiols to result in reversible modifications, which could potentially reduce the extent of MPO-induced damage during chronic inflammation. In this study, we show that exposure of macrophages, a key inflammatory cell type, to HOSCN results in the reversible modification of multiple mitochondrial proteins, leading to increased mitochondrial membrane permeability, decreased oxidative phosphorylation and reduced formation of ATP. The increased permeability and reduction in ATP could be reversed by pre-treatment of the macrophages with cyclosporine A, implicating a role for the mitochondrial permeability transition pore. HOSCN also drives cells to utilise fatty acids as an energetic substrate after the inhibition of oxidative phosphorylation. Raman imaging studies highlighted the ability of HOSCN to perturb the electron transport chain of mitochondria and redistribute these organelles within the cell. Taken together, these data provide new insight into the pathways by which HOSCN can induce cytotoxicity and cellular damage, which may have relevance for the development of inflammatory disease, and therapeutic strategies to reduce HOCl-induced damage by supplementation with SCN-.


Assuntos
Peroxidase , Tiocianatos , Linhagem Celular , Ácido Hipocloroso/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Oxidantes/metabolismo , Oxirredução , Peroxidase/metabolismo , Tiocianatos/metabolismo
9.
Redox Biol ; 36: 101586, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32505089

RESUMO

The precise characterization and quantification of oxidative protein damage is a significant challenge due to the low abundance, large variety, and heterogeneity of modifications. Mass spectrometry (MS)-based techniques at the peptide level (proteomics) provide a detailed but limited picture due to incomplete sequence coverage and imperfect enzymatic digestion. This is particularly problematic with oxidatively modified and cross-linked/aggregated proteins. There is a pressing need for methods that can quantify large numbers of modified amino acids, which are often present in low abundance compared to the high background of non-damaged amino acids, in a rapid and reliable fashion. We have developed a protocol using zwitterionic ion-exchange chromatography coupled with LC-MS to simultaneously quantify both parent amino acids and their respective oxidation products. Proteins are hydrolyzed with methanesulfonic acid in the presence of tryptamine and purified by strong cation exchange solid phase extraction. The method was validated for the common amino acids (excluding Gln, Asn, Cys) and the oxidation products 3-chlorotyrosine (3-ClTyr), 3-nitrotyrosine (3-NO2Tyr), di-tyrosine, Nε-(1-carboxymethyl)-l-lysine, o,o'-di-tyrosine, 3,4,-dihydroxyphenylalanine, hydroxy-tryptophan and kynurenine. Linear standard curves were observed over ~3 orders of magnitude dynamic range (2-1000 pmol for parent amino acids, 80 fmol-20 pmol for oxidation products) with limit-of-quantification values as low as 200 fmol (o,o'-di-tyrosine). The validated method was used to quantify Tyr and Trp loss, and formation of 3-NO2Tyr on the isolated protein anastellin treated with peroxynitrous acid, and for 3-ClTyr formation (over a 2 orders of magnitude range) in cell lysates and complex protein mixtures treated with hypochlorous acid.


Assuntos
Aminoácidos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Oxirredução , Peptídeos
10.
Xenobiotica ; 48(4): 400-406, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28287050

RESUMO

1. Case reports have shown that coadministration of fenofibric acid (FA) could increase bleeding risks of warfarin, but the mechanisms remained unknown. We therefore investigated the pharmacokinetic and pharmacodynamic interaction between warfarin and FA in rats. 2. Rats received warfarin alone (2 mg/kg) or coadministered with FA (100 mg/kg). FA significantly increased the exposure to warfarin, and decreased that to 7-hydroxywarfarin in rats nearly by two-fold, meanwhile increased Cmax and prolonged t1/2 of warfarin. Anticoagulant activity significantly increased, with prothrombin time (PT) up to 199 ± 33 s in coadministered group (approximately ten-fold compared with rats received warfarin alone). Incubation experiments illustrated FA inhibited CYP2C6 and CYP3A1/2 with the IC50 values of 6.98 and 16.14 µM, and inhibited the metabolism of warfarin (Ki value of 2.21 µM). Meanwhile, FA decreased the plasma protein binding of warfarin in vitro. 3. Our data suggested that the altered pharmacokinetics and pharmacodynamics of warfarin in rats was primarily attributed to the inhibition of metabolism. Anticoagulant activity monitoring or warfarin dose lowering needs to be considered when patients are coadministered with FA.


Assuntos
Anticoagulantes/farmacologia , Anticoagulantes/farmacocinética , Fenofibrato/análogos & derivados , Varfarina/farmacologia , Varfarina/farmacocinética , Animais , Fenofibrato/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
11.
J Pharm Sci ; 106(10): 3066-3075, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28552690

RESUMO

The purpose of this study was to develop a nanocarrier system for codelivery of paclitaxel (PTX) and piperlongumine (PL) and investigate the therapeutic potential of improving efficacy and reducing toxicity. PTX and PL were formulated into poly lactic-co-glycolic acid and D-α-tocopheryl polyethylene glycol succinate via organic solvent evaporation method. The average diameter was 117.1 ± 1.9 nm, and the zeta potential was -43.25 ± 2.76 mV. PL facilitated the cellular uptake of PTX, and the increased cytotoxicity was similarly displayed. The formulation with the PTX/PL concentration ratio at 1:200 showed the best antitumor activity, the IC50 of PTX were 5.10 ± 0.08 nM in HepG2 cells, and 3.79 ± 1.01 nM in Michigan Cancer Foundation-7 cells. Correspondingly, the combination index was 0.79 and 0.76. Furthermore, intracellular uptake of PTX toward HepG2 cells in coencapsulated nanoparticles was significantly more than free solution. In addition, the antitumor effect of PTX/PL-PTNPs in the HepG2 xenograft tumor model suggested that the nanoparticles showed a higher antitumor efficacy with reduced toxicity to other tissues compared with free PTX. In summary, the results indicated that PTX/PL-PTNPs processed well characteristics and enhanced its therapeutic efficacy; thus, this delivery system could be clinically effective for treatment of cancers.


Assuntos
Antineoplásicos/química , Dioxolanos/química , Nanopartículas/química , Paclitaxel/química , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Dioxolanos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Células Hep G2 , Humanos , Ácido Láctico/química , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Tamanho da Partícula , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
Sci Rep ; 6: 38787, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27934917

RESUMO

Palmitoyl ascorbate (PA) as an antioxidant has the potential for the treatment of cancer. In the present study, a nanocarrier system was developed for co-delivery of docetaxel (DOC) with palmitoyl ascorbate and the therapeutic efficacy of a combination drug regimen was investigated. For this purpose, different ratios of docetaxel and palmitoyl ascorbate were co-encapsulated in a liposome and they all showed high encapsulation efficiency. The average diameters of the liposomes ranged from 140 to 170 nm. Negative zeta potential values were observed for all systems, ranged from -40 mV to -56 mV. Studies on drug release and cellular uptake of the co-delivery system demonstrated that both drugs were effectively taken up by the cells and released slowly. Moreover, the liposome loading drugs with DOC/PA concentration ratio of 1:200 showed the highest anti-tumor activity to three different types of tumor cells. The higher in vivo therapeutic efficacy with lower systemic toxicity of the DOC-PA200-LPs was also verified by the H22 tumor bearing mice model. Our results showed that such co-loaded delivery systems could serve as a promising therapeutic approach to improve clinical outcomes against hepatic carcinoma.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Antioxidantes/administração & dosagem , Ácido Ascórbico/análogos & derivados , Taxoides/administração & dosagem , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/toxicidade , Antioxidantes/uso terapêutico , Antioxidantes/toxicidade , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/uso terapêutico , Ácido Ascórbico/toxicidade , Linhagem Celular Tumoral , Docetaxel , Composição de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Lipossomos/administração & dosagem , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Camundongos Endogâmicos ICR , Nanocápsulas , Tamanho da Partícula , Veículos Farmacêuticos , Taxoides/toxicidade , Carga Tumoral
13.
Drug Metab Pharmacokinet ; 31(4): 269-75, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27452633

RESUMO

Curcumin can synergistically enhance docetaxel's in vitro and in vivo antitumor activity and has been co-administrated with docetaxel in clinical trials. The aim of our study is to investigate the effect of curcumin on the pharmacokinetics of docetaxel and explore its mechanism on OATP1B1, OATP1B3 and human liver microsomes (HLMs). In rats, curcumin increased the docetaxel area under the plasma concentration-time curve (AUC0-8h) and the terminal half-life (t1/2) to 1.86- and 1.55-fold, respectively. Moreover, curcumin decreased the clearance (CL) of docetaxel to 52.1%. Human embryonic kidney 293 (HEK293) cells stably expressing OATP1B1 and OATP1B3 were used to observe the effects of curcumin on OATP1B1 and OATP1B3-mediated uptake of docetaxel. Curcumin exhibited potent inhibition on OATP1B1 and OATP1B3-mediated docetaxel uptake with IC50 values of 3.81 ± 1.19 µM and 33.70 ± 1.22 µM, respectively. The inhibition of curcumin on docetaxel metabolism in HLMs indicated that curcumin can modestly inhibit the metabolism of docetaxel with the IC50 value of 22.70 ± 1.13 µM and Ki value of 24.72 ± 4.24 µM. The preclinical and clinical improved docetaxel's therapeutic efficacy when co-administrated with curcumin may be due to the inhibition of curcumin on OATP1B1, OATP1B3 and HLMs activities. Close attention should be paid when combined treatment with docetaxel and curcumin carried out clinically.


Assuntos
Antineoplásicos/farmacocinética , Curcumina/farmacologia , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Taxoides/farmacocinética , Animais , Antineoplásicos/metabolismo , Docetaxel , Interações Medicamentosas , Células HEK293 , Humanos , Cinética , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Masculino , Microssomos Hepáticos/enzimologia , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Ratos Sprague-Dawley , Taxoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...