Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 11(6): nwae050, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38707205

RESUMO

High intraocular pressure (IOP) is one of the high-risk pathogenic factors of glaucoma. Existing methods of IOP measurement are based on the direct interaction with the cornea. Commercial ophthalmic tonometers based on snapshot measurements are expensive, bulky, and their operation requires trained personnel. Theranostic contact lenses are easy to use, but they may block vision and cause infection. Here, we report a sensory system for IOP assessment that uses a soft indentor with two asymmetrically deployed iontronic flexible pressure sensors to interact with the eyelid-eyeball in an eye-closed situation. Inspired by human fingertip assessment of softness, the sensory system extracts displacement-pressure information for soft evaluation, achieving high accuracy IOP monitoring (>96%). We further design and custom-make a portable and wearable ophthalmic tonometer based on the sensory system and demonstrate its high efficacy in IOP screening. This sensory system paves a way towards cost-effective, robust, and reliable IOP monitoring.

2.
ACS Nano ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760182

RESUMO

Flexible sensing systems (FSSs) designed to measure plantar pressure can deliver instantaneous feedback on human movement and posture. This feedback is crucial not only for preventing and controlling diseases associated with abnormal plantar pressures but also for optimizing athletes' postures to minimize injuries. The development of an optimal plantar pressure sensor hinges on key metrics such as a wide sensing range, high sensitivity, and long-term stability. However, the effectiveness of current flexible sensors is impeded by numerous challenges, including limitations in structural deformability, mechanical incompatibility between multifunctional layers, and instability under complex stress conditions. Addressing these limitations, we have engineered an integrated pressure sensing system with high sensitivity and reliability for human plantar pressure and gait analysis. It features a high-modulus, porous laminated ionic fiber structure with robust self-bonded interfaces, utilizing a unified polyimide material system. This system showcases a high sensitivity (156.6 kPa-1), an extensive sensing range (up to 4000 kPa), and augmented interfacial toughness and durability (over 150,000 cycles). Additionally, our FSS is capable of real-time monitoring of plantar pressure distribution across various sports activities. Leveraging deep learning, the flexible sensing system achieves a high-precision, intelligent recognition of different plantar types with a 99.8% accuracy rate. This approach provides a strategic advancement in the field of flexible pressure sensors, ensuring prolonged stability and accuracy even amidst complex pressure dynamics and providing a feasible solution for long-term gait monitoring and analysis.

3.
Nat Commun ; 15(1): 3048, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589497

RESUMO

Flexible pressure sensors can convert mechanical stimuli to electrical signals to interact with the surroundings, mimicking the functionality of the human skins. Piezocapacitive pressure sensors, a class of most widely used devices for artificial skins, however, often suffer from slow response-relaxation speed (tens of milliseconds) and thus fail to detect dynamic stimuli or high-frequency vibrations. Here, we show that the contact-separation behavior of the electrode-dielectric interface is an energy dissipation process that substantially determines the response-relaxation time of the sensors. We thus reduce the response and relaxation time to ~0.04 ms using a bonded microstructured interface that effectively diminishes interfacial friction and energy dissipation. The high response-relaxation speed allows the sensor to detect vibrations over 10 kHz, which enables not only dynamic force detection, but also acoustic applications. This sensor also shows negligible hysteresis to precisely track dynamic stimuli. Our work opens a path that can substantially promote the response-relaxation speed of piezocapacitive pressure sensors into submillisecond range and extend their applications in acoustic range.

4.
Nat Mater ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514845

RESUMO

Artificial pressure sensors often use soft materials to achieve skin-like softness, but the viscoelastic creep of soft materials and the ion leakage, specifically for ionic conductors, cause signal drift and inaccurate measurement. Here we report drift-free iontronic sensing by designing and copolymerizing a leakage-free and creep-free polyelectrolyte elastomer containing two types of segments: charged segments having fixed cations to prevent ion leakage and neutral slippery segments with a high crosslink density for low creep. We show that an iontronic sensor using the polyelectrolyte elastomer barely drifts under an ultrahigh static pressure of 500 kPa (close to its Young's modulus), exhibits a drift rate two to three orders of magnitude lower than that of the sensors adopting conventional ionic conductors and enables steady and accurate control for robotic manipulation. Such drift-free iontronic sensing represents a step towards highly accurate sensing in robotics and beyond.

5.
Nano Lett ; 24(13): 4012-4019, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527220

RESUMO

The measurement of in-plane mechanical properties, such as Young's modulus and strength, of thin and stretchable materials has long been a challenge. Existing measurements, including wrinkle instability and nano indentation, are either indirect or destructive, and are inapplicable to meshes or porous materials, while the conventional tension test fails to measure the mechanical properties of nanoscale films. Here, we report a technique to test thin and stretchable films by loading a thin film afloat via differential surface tension and recording its deformation. We have demonstrated the method by measuring the Young's moduli of homogeneous films of soft materials including polydimethylsiloxane and Ecoflex and verified the results with known values. We further measured the strain distributions of meshes, both isotropic and anisotropic, which were otherwise nearly impossible to measure. The method proposed herein is expected to be generally applicable to many material systems that are thin, stretchable, and water-insoluble.

6.
Nat Commun ; 14(1): 7121, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963866

RESUMO

Humans can gently slide a finger on the surface of an object and identify it by capturing both static pressure and high-frequency vibrations. Although modern robots integrated with flexible sensors can precisely detect pressure, shear force, and strain, they still perform insufficiently or require multi-sensors to respond to both static and high-frequency physical stimuli during the interaction. Here, we report a real-time artificial sensory system for high-accuracy texture recognition based on a single iontronic slip-sensor, and propose a criterion-spatiotemporal resolution, to corelate the sensing performance with recognition capability. The sensor can respond to both static and dynamic stimuli (0-400 Hz) with a high spatial resolution of 15 µm in spacing and 6 µm in height, together with a high-frequency resolution of 0.02 Hz at 400 Hz, enabling high-precision discrimination of fine surface features. The sensory system integrated on a prosthetic fingertip can identify 20 different commercial textiles with a 100.0% accuracy at a fixed sliding rate and a 98.9% accuracy at random sliding rates. The sensory system is expected to help achieve subtle tactile sensation for robotics and prosthetics, and further be applied to haptic-based virtual reality and beyond.

7.
Adv Healthc Mater ; 12(29): e2301838, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602671

RESUMO

Arteriosclerosis, which appears as a hardened and narrowed artery with plaque buildup, is the primary cause of various cardiovascular diseases such as stroke. Arteriosclerosis is often evaluated by clinically measuring the pulse wave velocity (PWV) using a two-point approach that requires bulky medical equipment and a skilled operator. Although wearable photoplethysmographic sensors for PWV monitoring are developed in recent years, likewise, this technique is often based on two-point measurement, and the signal can easily be interfered with by natural light. Herein, a single-point strategy is reported based on stable fingertip pulse monitoring using a flexible iontronic pressure sensor for heart-fingertip PWV (hfPWV) measurement. The iontronic sensor exhibits a high pressure-resolution on the order of 0.1 Pa over a wide linearity range, allowing the capture of characteristic peaks of fingertip pulse waves. The forward and reflected waves of the pulse are extracted and the time difference between the two waves is computed for hfPWV measurement using Hiroshi's method. Furthermore, a hfPWV-based model is established for arteriosclerosis evaluation with an accuracy comparable to that of existing clinical criteria, and the validity of the model is verified clinically. The work provides a reliable technique that can be used in wearable arteriosclerosis assessment systems.


Assuntos
Arteriosclerose , Doenças Cardiovasculares , Dispositivos Eletrônicos Vestíveis , Humanos , Análise de Onda de Pulso , Arteriosclerose/diagnóstico , Monitorização Fisiológica
8.
Sci Adv ; 9(9): eadf8831, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867698

RESUMO

Iontronic pressure sensors are promising in robot haptics because they can achieve high sensing performance using nanoscale electric double layers (EDLs) for capacitive signal output. However, it is challenging to achieve both high sensitivity and high mechanical stability in these devices. Iontronic sensors need microstructures that offer subtly changeable EDL interfaces to boost sensitivity, while the microstructured interfaces are mechanically weak. Here, we embed isolated microstructured ionic gel (IMIG) in a hole array (28 × 28) of elastomeric matrix and cross-link the IMIGs laterally to achieve enhanced interfacial robustness without sacrificing sensitivity. The embedded configuration toughens and strengthens the skin by pinning cracks and by the elastic dissipation of the interhole structures. Furthermore, cross-talk between the sensing elements is suppressed by isolating the ionic materials and by designing a circuit with a compensation algorithm. We have demonstrated that the skin is potentially useful for robotic manipulation tasks and object recognition.

9.
ACS Nano ; 17(6): 5211-5295, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36892156

RESUMO

Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Qualidade de Vida
10.
Nano Lett ; 23(4): 1371-1378, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36735577

RESUMO

Pottery is the oldest art and plays a landmark role in human civilization. The repair of ceramic relics often uses acrylic resins and cyanoacrylate adhesives. However, existing adhesives often take hours to get cured, and wet adhesion is not possible. We herein propose a redox initiator-triggered hydrogel adhesive, of which robust (∼700 J m-2) and wet adhesion with potsherds can be achieved within a few seconds. The high toughness lies in the self-limited delocalized rupture of the porous interface, and the wet adhesion is due to the hydrophilic precursor and its free radical polymerization. The hydrogel adhesive also exhibits high aging resistance for stable preservation of ∼400 annuals. We have applied the adhesive to the restoration of artifacts excavated from Yinxu, Anyang (∼1300 BC) and the Xia Jiao Shan site (∼4000 BC, Neolithic), and the adhesive is expected to be extended to applications beyond archeology.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36282010

RESUMO

With the confrontation of ever increasing complicated working objects and unstructured environments, it is necessary for soft robots to be equipped with diverse intelligent mechanical structures, for example, anisotropically motorial bulk and timely proprio/exteroceptive sensing with programmable morphologies. Owing to abundant pores inside, porous media are promising to host various intelligent functions as interfaces/structures of robots yet challenging because of a limited anisotropic response inherited from a random hierarchical pore distribution. Here, an electron competition between Ga, N, and Pt is found and used to tune the polymerization of a gradient liquid alloy and NH4HCO3-suspended silicone precursor mixture and, thus, decompose gas movements in gradient pore formation under high-temperature heating (120 °C). By such a competition-collaboration effect, we present here an interconnected gradient porous structure (GPS) that can serve as an anisotropically robotic motorial bulk. Moreover, the mechanical stiffness and piezoresistive/capacitive property of GPS can be further tuned and reconfigured via so-called self-sucked coating, following solvent erasing. Such new structures provide a dynamic tactile recognition with an ultrabroad sensing range (from 135 Pa to 2.3 MPa) and a reconfigurable biomimetic elephant trunk with monolithic proprioceptive sensing-integrated bulks.

12.
Nat Biomed Eng ; 6(10): 1118-1133, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35788686

RESUMO

Diabetic foot ulcers and other chronic wounds with impaired healing can be treated with bioengineered skin or with growth factors. However, most patients do not benefit from these treatments. Here we report the development and preclinical therapeutic performance of a strain-programmed patch that rapidly and robustly adheres to diabetic wounds, and promotes wound closure and re-epithelialization. The patch consists of a dried adhesive layer of crosslinked polymer networks bound to a pre-stretched hydrophilic elastomer backing, and implements a hydration-based shape-memory mechanism to mechanically contract diabetic wounds in a programmable manner on the basis of analytical and finite-element modelling. In mouse and human skin, and in mini-pigs and humanized mice, the patch enhanced the healing of diabetic wounds by promoting faster re-epithelialization and angiogenesis, and the enrichment of fibroblast populations with a pro-regenerative phenotype. Strain-programmed patches might also be effective for the treatment of other forms of acute and chronic wounds.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Animais , Camundongos , Suínos , Porco Miniatura , Cicatrização , Pé Diabético/tratamento farmacológico , Pé Diabético/metabolismo , Elastômeros , Polímeros/uso terapêutico
13.
Nat Commun ; 13(1): 4177, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853940

RESUMO

Soft magneto-active machines capable of magnetically controllable shape-morphing and locomotion have diverse promising applications such as untethered biomedical robots. However, existing soft magneto-active machines often have simple structures with limited functionalities and do not grant high-throughput production due to the convoluted fabrication technology. Here, we propose a facile fabrication strategy that transforms 2D magnetic sheets into 3D soft magneto-active machines with customized geometries by incorporating origami folding. Based on automated roll-to-roll processing, this approach allows for the high-throughput fabrication of soft magneto-origami machines with a variety of characteristics, including large-magnitude deploying, sequential folding into predesigned shapes, and multivariant actuation modes (e.g., contraction, bending, rotation, and rolling locomotion). We leverage these abilities to demonstrate a few potential applications: an electronic robot capable of on-demand deploying and wireless charging, a mechanical 8-3 encoder, a quadruped robot for cargo-release tasks, and a magneto-origami arts/craft. Our work contributes for the high-throughput fabrication of soft magneto-active machines with multi-functionalities.


Assuntos
Locomoção , Rotação
14.
Artigo em Inglês | MEDLINE | ID: mdl-35819313

RESUMO

Many biological hydrogels are mechanically robust to bear quasi-static and impact loads. In contrast, the mechanical properties of synthetic hydrogels against impact loads remain substantially unexplored, albeit their mechanical robustness under quasi-static loads has been extensively developed. Here, we report on the design and synthesis of strong, tough, and impact-resistant hydrogel composites by reinforcing Ca-alginate/polyacrylamide hydrogels with glass fabrics and conferring strong interfaces between the hydrogel matrix and the fibers. The fabric enables high elastic modulus, the hydrogel matrix enables large dissipation, and the strong interfaces enable efficient load transfer for synergistic strengthening and toughening, which is manifested by digital image correlation analyses. Under quasi-static loads, the hydrogel composite exhibits an elastic modulus of 35 MPa and a toughness of 206.7 kJ/m2. Under impact loads, a piece of 7.7 g sample bears the impact of energy of 7.4 J and resists more than 100 cycles of consecutive impact of 600 mJ. As a proof-of-concept, a hydrogel composite as a safeguard to protect fragile glasses from impact is demonstrated. Because impact phenomena are universal, it is expected that the study on the impact of hydrogels will draw increasing attention.

15.
Adv Mater ; 34(52): e2200903, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35313049

RESUMO

Polymers are widely used in optical devices, electronic devices, energy-harvesting/storage devices, and sensors, owing to their low weight, excellent flexibility, and simple fabrication process. With advancements in micro/nanoprocessing techniques and more demanding application requirements, it is becoming necessary to realize high-resolution fabrication of polymers to prepare miniaturized devices. This is particularly because conventional processing technologies suffer from high thermal stress and strong adhesion/friction, which can irreversibly damage the micro/nanostructures of miniaturized devices. In addition, although the use of advanced fabrication methods to prepare high-resolution micro/nanostructures is explored, these methods are limited to laboratory research or small-batch production. This review focuses on the micro/nanoprocessing of polymeric materials and devices with high spatial precision and replication accuracy for industrial applications. Specifically, the current state-of-the-art techniques and future trends for micro/nanomolding, high-energy beam processing, and micro/nanomachining are discussed. Moreover, an overview of the fabrication and applications of various polymer-based elements and devices such as microlenses, biosensors, and transistors is provided. These techniques are expected to be widely applied for multiscale and multimaterial processing as well as for multifunction integration in next-generation integrated devices, such as photoelectric, smart, and biodegradable devices.

16.
Nat Commun ; 13(1): 1317, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273183

RESUMO

Electronic skins (e-skins) are devices that can respond to mechanical stimuli and enable robots to perceive their surroundings. A great challenge for existing e-skins is that they may easily fail under extreme mechanical conditions due to their multilayered architecture with mechanical mismatch and weak adhesion between the interlayers. Here we report a flexible pressure sensor with tough interfaces enabled by two strategies: quasi-homogeneous composition that ensures mechanical match of interlayers, and interlinked microconed interface that results in a high interfacial toughness of 390 J·m-2. The tough interface endows the sensor with exceptional signal stability determined by performing 100,000 cycles of rubbing, and fixing the sensor on a car tread and driving 2.6 km on an asphalt road. The topological interlinks can be further extended to soft robot-sensor integration, enabling a seamless interface between the sensor and robot for highly stable sensing performance during manipulation tasks under complicated mechanical conditions.

17.
ACS Nano ; 16(3): 4338-4347, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35234457

RESUMO

Flexible pressure sensors that have high sensitivity, high linearity, and a wide pressure-response range are highly desired in applications of robotic sensation and human health monitoring. The challenge comes from the incompressibility of soft materials and the stiffening of microstructures in the device interfaces that lead to gradually saturated response. Therefore, the signal is nonlinear and pressure-response range is limited. Here, we show an iontronic flexible pressure sensor that can achieve high sensitivity (49.1 kPa-1), linear response (R2 > 0.995) over a broad pressure range (up to 485 kPa) enabled by graded interlocks of an array of hemispheres with fine pillars in the ionic layer. The high linearity comes from the fact that the pillar deformation can compensate for the effect of structural stiffening. The response-relaxation time of the sensor is <5 ms, allowing the device to detect vibration signals with frequencies up to 200 Hz. Our sensor has been used to recognize objects with different weights based on machine learning during the gripper grasping tasks. This work provides a strategy to make flexible pressure sensors that have combined performances of high sensitivity, high linearity, and wide pressure-response range.

18.
Sci Transl Med ; 14(630): eabh2857, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108064

RESUMO

Surgical sealing and repair of injured and resected gastrointestinal (GI) organs are critical requirements for successful treatment and tissue healing. Despite being the standard of care, hand-sewn closure of GI defects using sutures faces limitations and challenges. In this work, we introduce an off-the-shelf bioadhesive GI patch capable of atraumatic, rapid, robust, and sutureless repair of GI defects. The GI patch integrates a nonadhesive top layer and a dry, bioadhesive bottom layer, resulting in a thin, flexible, transparent, and ready-to-use patch with tissue-matching mechanical properties. The rapid, robust, and sutureless sealing capability of the GI patch is systematically characterized using ex vivo porcine GI organ models. In vitro and in vivo rat models are used to evaluate the biocompatibility and degradability of the GI patch in comparison to commercially available tissue adhesives (Coseal and Histoacryl). To validate the GI patch's efficacy, we demonstrate successful sutureless in vivo sealing and healing of GI defects in rat colon, stomach, and small intestine as well as in porcine colon injury models. The proposed GI patch provides a promising alternative to suture for repair of GI defects and offers potential clinical opportunities for the repair of other organs.


Assuntos
Procedimentos Cirúrgicos sem Sutura , Adesivos Teciduais , Animais , Ratos , Estômago , Suínos , Adesivos Teciduais/farmacologia , Adesivos Teciduais/uso terapêutico , Cicatrização
19.
Adv Mater ; 34(15): e2200261, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35170097

RESUMO

Conducting polymer hydrogels are promising materials in soft bioelectronics because of their tissue-like mechanical properties and the capability of electrical interaction with tissues. However, it is challenging to balance electrical conductivity and mechanical stretchability: pure conducting polymer hydrogels are highly conductive, but they are brittle; while incorporating the conducting network with a soft network to form a double network can improve the stretchability, its electrical conductivity significantly decreases. Here, the problem is addressed by concentrating a poorly crosslinked precursor hydrogel with a high content ratio of the conducting polymer to achieve a densified double-network hydrogel (5.5 wt% conducting polymer), exhibiting both high electrical conductivity (≈10 S cm-1 ) and a large fracture strain (≈150%), in addition to high biocompatibility, tissue-like softness, low swelling ratio, and desired electrochemical properties for bioelectronics. A surface grafting method is further used to form an adhesive layer on the conducting hydrogel, enabling robust and rapid bonding on the tissues. Furthermore, the proposed hydrogel is applied to show high-quality physiological signal recording and reliable, low-voltage electrical stimulation based on an in vivo rat model. This method provides an ideal strategy for rapid and reliable tissue-device integration with high-quality electrical communications.


Assuntos
Hidrogéis , Polímeros , Adesivos , Animais , Condutividade Elétrica , Eletricidade , Hidrogéis/química , Polímeros/química , Ratos
20.
Soft Robot ; 9(3): 613-624, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34255577

RESUMO

Soft pneumatic actuators (SPAs) are extensively investigated due to their simple control strategies for producing sophisticated motions. However, the motions or operations of homogeneous SPAs show obvious limitations in some varying curvature interaction scenarios because of the profile mismatch of homogeneous SPAs and specific interacted objects. Herein, a stiffness preprogrammable soft pneumatic actuator (SPSPA) is proposed by discretely presetting gradient geometrical or materials distributions. Through finite element analysis and experimental validation, a mathematical model of behavior prediction of SPSPA was built to relate the geometrical parameters/materials with its morphing behaviors, making it possible to reversely obtain designed parameters. This design strategy enables conformal and efficient interaction in some curvature varying scenarios. Specifically, higher effective contact area, perimeter utilization ratio, and conformal ability can be obtained while interacting with those inhomogeneous curvature objects, for example, more than 434.7% improvement in contact area rates and 12.5% enhancement in perimeter utilization ratios toward a typical equilateral triangle object. Further, a serial of SPSPAs that have conformal grasping/interactive capability, better contact sensing behaviors were demonstrated. For example, an SPSPA and an SPSP robot were demonstrated, which showed better kinetic, kinematic characterizations and sensing capability compared with the homogeneous one while coming across varying curvature objects. Moreover, underactuated finger rehabilitation SPSPAs were demonstrated with customized profiles and coupled joint motion. This customized scheme can be potentially used in those specific-purposed, single, and repetitive application scenarios where varying curvature, conformal and efficient interaction are needed.


Assuntos
Robótica , Fenômenos Biomecânicos , Desenho de Equipamento , Modelos Teóricos , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...