Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 875
Filtrar
1.
Int Orthop ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691141

RESUMO

BACKGROUND: Patients with dysplasia of the hip (DDH) have different degrees of bone defects above and outside the acetabulum, and anatomically reconstructing the acetabular centre of rotation is difficult in primary total hip arthroplasty (THA). METHODS: From April 2012 to December 2022, 64 patients (64 hips) with DDH treated with THA with structural bone graft in the superolateral acetabulum were selected. The Oxford hip score(OHS), Barthel index (BI), leg length discrepancy, Wibegr central edge-angle(CE), gluteus medius muscle strength, vertical and horizontal distance of the hip rotation center, coverage rate of the bone graft and complications were used to evaluate the clinical effectiveness of the patients. RESULTS: All patients were followed up for an average of 7.3±1.9 years. The OHS improved significantly after the operation (P<0.001). The postoperative BI was significantly greater than that before operation (P<0.001). The postoperative leg length discrepancy was significantly lower than that before the operation (P<0.001). Postoperative bedside photography revealed that the height and horizontal distance to the hip rotation center were significantly lower after surgery than before surgery (P<0.001). The postoperative CE was significantly greater than that before surgery (P<0.001). No acetabular component loosening or bone graft resorption was found during the postoperative imaging examination. CONCLUSIONS: The use of biological acetabular cup combined with structural bone graft in the superolateral acetabulum in THA for DDH can obtain satisfactory medium and long-term clinical and radiological results.

2.
Microbiome ; 12(1): 86, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730492

RESUMO

BACKGROUND: Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS: Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION: We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.


Assuntos
Diferenciação Celular , Clostridiales , Microbioma Gastrointestinal , Linfócitos T Reguladores , Trichuris , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Malásia , Clostridiales/isolamento & purificação , Humanos , Ácidos Graxos Voláteis/metabolismo , Feminino , Tricuríase/parasitologia , Tricuríase/imunologia , Tricuríase/microbiologia
3.
Expert Rev Vaccines ; 23(1): 523-534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38682812

RESUMO

BACKGROUND: Traditional vaccine development, often a lengthy and costly process of three separated phases. However, the swift development of COVID-19 vaccines highlighted the critical importance of accelerating the approval of vaccines. This article showcases a seamless phase 2/3 trial design to expedite the development process, particularly for multi-valent vaccines. RESEARCH DESIGN AND METHODS: This study utilizes simulation to compare the performance of seamless phase 2/3 design with that of conventional trial design, specifically by re-envisioning a 9-valent HPV vaccine trial. Across three cases, several key performance metrics are evaluated: overall power, type I error rate, average sample size, trial duration, the percentage of early stop, and the accuracy of dose selection. RESULTS: On average, when the experimental vaccine was assumed to be effective, the seamless design that performed interim analyses based solely on efficacy saved 555.73 subjects, shortened trials by 10.29 months, and increased power by 3.70%. When the experimental vaccine was less effective than control, it saved an average of 887.73 subjects while maintaining the type I error rate below 0.025. CONCLUSION: The seamless design proves to be a compelling strategy for vaccine development, given its versatility in early stopping, re-estimating sample sizes, and shortening trial durations.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Projetos de Pesquisa , Desenvolvimento de Vacinas , Humanos , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Desenvolvimento de Vacinas/métodos , Tamanho da Amostra , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/imunologia , Simulação por Computador
4.
Cell Host Microbe ; 32(5): 661-675.e10, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657606

RESUMO

The intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa. Using genetics, we identified multiple responsible metabolic genes in phylogenetically diverse microbes. By colonizing germ-free mice with the wild-type strain and their isogenic mutant deficient in individual aa-metabolizing genes, we found that these genes regulate the availability of gut and circulatory aa. Notably, microbiota genes for branched-chain amino acids (BCAAs) and tryptophan metabolism indirectly affect host glucose homeostasis via peripheral serotonin. Collectively, at single-gene level, this work characterizes a microbiota-encoded metabolic activity that affects host nutrient homeostasis and provides a roadmap to interrogate microbiota-dependent activity to improve human health.


Assuntos
Aminoácidos de Cadeia Ramificada , Aminoácidos , Microbioma Gastrointestinal , Homeostase , Triptofano , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos , Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Triptofano/metabolismo , Camundongos Endogâmicos C57BL , Nutrientes/metabolismo , Intestinos/microbiologia , Humanos , Metabolômica , Glucose/metabolismo , Serotonina/metabolismo , Vida Livre de Germes , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Masculino
5.
Bioresour Technol ; 401: 130746, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679240

RESUMO

Nanotechnology and biotechnology offer promising avenues for bolstering food security through the facilitation of soil nitrogen (N) sequestration and the reduction of nitrate leaching. Nonetheless, a comprehensive and mechanistic evaluation of their effectiveness and safety remains unclear. In this study, a soil remediation strategy employing nano-Fe3O4 and straw in N-contaminated soil was developed to elucidate N retention mechanisms via diverse metagenomics techniques. The findings revealed that subsoil amended with straw, particularly in conjunction with nano-Fe3O4, significantly increased subsoil N content (53.2%) and decreased nitrate concentration (74.6%) in leachate. Furthermore, the enrichment of functional genes associated with N-cycling, sulfate, nitrate, and iron uptake, along with chemotaxis, and responses to environmental stimuli or microbial collaboration, effectively mitigates nitrate leaching while enhancing soil N sequestration. This study introduces a pioneering approach utilizing nanomaterials in soil remediation, thereby offering the potential for the cultivation of safe vegetables in high N input greenhouse agriculture.


Assuntos
Agricultura , Desnitrificação , Nitrogênio , Solo , Agricultura/métodos , Solo/química , Nitratos , Microbiologia do Solo , Poluentes do Solo/metabolismo
6.
Antiviral Res ; 227: 105890, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657838

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic bunyavirus with a fatality rate of up to 40%. Currently, there are no licensed antiviral drugs for the treatment of CCHF; thus, the World Health Organization (WHO) listed the disease as a priority. A unique viral transcription initiation mechanism called "cap-snatching" is shared by influenza viruses and bunyaviruses. Thus, we tested whether baloxavir (an FDA-approved anti-influenza drug that targets the "cap-snatching" mechanism) could inhibit CCHFV infection. In cell culture, baloxavir acid effectively inhibited CCHFV infection and targeted CCHFV RNA transcription/replication. However, it has weak oral bioavailability. Baloxavir marboxil (the oral prodrug of baloxavir) failed to protect mice against a lethal dose challenge of CCHFV. To solve this problem, baloxavir sodium was synthesized owing to its enhanced aqueous solubility and pharmacokinetic properties. It consistently and significantly improved survival rates and decreased tissue viral loads. This study identified baloxavir sodium as a novel scaffold structure and mechanism of anti-CCHF compound, providing a promising new strategy for clinical treatment of CCHF after further optimization.

7.
Ying Yong Sheng Tai Xue Bao ; 35(3): 827-836, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646771

RESUMO

The proportion and area of ratoon rice planting in China have been substantially increased, due to continuous improvement of rice breeding methods and consecutive innovation of cultivation technology, which has developed into one of rice planting modes with significant production efficiency. Combining the experience in research and practice, from the perspective of crop physiology and ecology, we reviewed the current situation and prospects of high-yielding formation and physiological mechanisms of ratoon rice. We focused on four key aspects: screening and breeding of ratoon rice cultivars and the classification; suitable stubble height for mechanically harvested ratoon rice, as well as water and fertilizer management; dry matter production and allocation in ratoon rice and the relationship with yield formation; regenerative activity and vigor of ratoon rice roots and their relationship with rhizosphere micro-ecological characteristics. As for the extending of mechanized low-cut stubbles ratoon rice technique, we should properly regulate the rhizosphere system, coordinate rhizosphere nutrient supply, germination of axillary buds, and tillering regeneration, to achieve the target of "four-high-one-low", that is high regeneration coefficient, high number of regeneration panicle, high harvest index, high yield, high quality, low-carbon and safe, aiming to improve the sustainability of ratoon rice industry.


Assuntos
Oryza , Oryza/crescimento & desenvolvimento , China , Produção Agrícola/métodos , Rizosfera , Melhoramento Vegetal , Agricultura/métodos , Fertilizantes , Raízes de Plantas/crescimento & desenvolvimento
8.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612520

RESUMO

Panax quinquefolius L. is an important medicinal plant, and flavonoids are among its main secondary metabolites. The R2R3-MYB transcription factor plays an irreplaceable role in plant growth, development, and secondary metabolism. In our study, we identified 159 R2R3-MYBs and analyzed their physical and chemical properties in P. quinquefolius. The protein length of 159 PqMYBs varied from 107 to 1050 amino acids. The molecular weight ranged from 12.21 to 116.44 kDa. The isoelectric point was between 4.57 and 10.34. We constructed a phylogenetic tree of P. quinquefolius and Arabidopsis thaliana R2R3-MYB family members, and PqMYB members were divided into 33 subgroups. Transcriptome data analysis showed that the expression patterns of PqMYBs in root, leaf, and flower were significantly different. Following the MeJA treatment of seedlings, five candidate PqMYB genes demonstrated a response. A correlation analysis of PqMYBs and candidate flavonoid pathway genes showed that PqMYB2, PqMYB46, and PqMYB72 had correlation coefficients that were higher than 0.8 with PqCHS, PqANS4, and PqCCoAMT10, respectively. Furthermore, a transient expression assay confirmed that the three PqMYBs were localized in the nucleus. We speculated that these three PqMYBs were related to flavonoid biosynthesis in P. quinquefolius. These results provided a theoretical basis and a new perspective for further understanding the R2R3-MYB gene family and the biosynthesis mechanism of secondary metabolites in P. quinquefolius.


Assuntos
Arabidopsis , Genes myb , Fatores de Transcrição/genética , Filogenia , Metabolismo Secundário , Arabidopsis/genética , Flavonoides
9.
Natl Sci Rev ; 11(5): nwae085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577670

RESUMO

Catalytic oxidative desulfurization (ODS) using titanium silicate catalysts has emerged as an efficient technique for the complete removal of organosulfur compounds from automotive fuels. However, the precise control of highly accessible and stable-framework Ti active sites remains highly challenging. Here we reveal for the first time by using density functional theory calculations that framework hexa-coordinated Ti (TiO6) species of mesoporous titanium silicates are the most active sites for ODS and lead to a lower-energy pathway of ODS. A novel method to achieve highly accessible and homogeneously distributed framework TiO6 active single sites at the mesoporous surface has been developed. Such surface framework TiO6 species exhibit an exceptional ODS performance. A removal of 920 ppm of benzothiophene is achieved at 60°C in 60 min, which is 1.67 times that of the best catalyst reported so far. For bulky molecules such as 4,6-dimethyldibenzothiophene (DMDBT), it takes only 3 min to remove 500 ppm of DMDBT at 60°C with our catalyst, which is five times faster than that with the current best catalyst. Such a catalyst can be easily upscaled and could be used for concrete industrial application in the ODS of bulky organosulfur compounds with minimized energy consumption and high reaction efficiency.

10.
Chin Med Sci J ; 39(1): 19-28, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38623048

RESUMO

Objective As primary Sj?gren's syndrome (pSS) primarily affects the salivary glands, saliva can serve as an indicator of the glands' pathophysiology and the disease's status. This study aims to illustrate the salivary proteomic profiles of pSS patients and identify potential candidate biomarkers for diagnosis.Methods The discovery set contained 49 samples (24 from pSS and 25 from age- and gender-matched healthy controls [HCs]) and the validation set included 25 samples (12 from pSS and 13 from HCs). Totally 36 pSS patients and 38 HCs were centrally randomized into the discovery set or to the validation set at a 2:1 ratio. Unstimulated whole saliva samples from pSS patients and HCs were analyzed using a data-independent acquisition (DIA) strategy on a 2D LC?HRMS/MS platform to reveal differential proteins. The crucial proteins were verified using DIA analysis and annotated using gene ontology (GO) and International Pharmaceutical Abstracts (IPA) analysis. A prediction model for SS was established using random forests.Results A total of 1,963 proteins were discovered, and 136 proteins exhibited differential representation in pSS patients. The bioinformatic research indicated that these proteins were primarily linked to immunological functions, metabolism, and inflammation. A panel of 19 protein biomarkers was identified by ranking order based on P-value and random forest algorichm, and was validated as the predictive biomarkers exhibiting good performance with area under the curve (AUC) of 0.817 for discovery set and 0.882 for validation set.Conclusions The candidate protein panel discovered may aid in pSS diagnosis. Salivary proteomic analysis is a promising non-invasive method for prognostic evaluation and early and precise treatments for pSS patients. DIA offers the best time efficiency and data dependability and may be a suitable option for future research on the salivary proteome.


Assuntos
Síndrome de Sjogren , Humanos , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/metabolismo , Proteômica/métodos , Biomarcadores/metabolismo , Saliva/metabolismo , Prognóstico
11.
Pharmacol Res ; 202: 107136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460778

RESUMO

CREB-regulated transcription coactivator 1 (CRTC1), a pivotal synaptonuclear messenger, regulates synaptic plasticity and transmission to prevent depression. Despite exhaustive investigations into CRTC1 mRNA reductions in the depressed mice, the regulatory mechanisms governing its transcription remain elusive. Consequently, exploring rapid but non-toxic CRTC1 inducers at the transcriptional level is important for resisting depression. Here, we demonstrate the potential of D-arabinose, a unique monosaccharide prevalent in edible-medicinal plants, to rapidly enter the brain and induce CRTC1 expression, thereby eliciting rapid-acting and persistent antidepressant responses in chronic restrain stress (CRS)-induced depressed mice. Mechanistically, D-arabinose induces the expressions of peroxisome proliferator-activated receptor gamma (PPARγ) and transcription factor EB (TFEB), thereby activating CRTC1 transcription. Notably, we elucidate the pivotal role of the acetyl-CoA synthetase short-chain family member 2 (ACSS2) as an obligatory mediator for PPARγ and TFEB to potentiate CRTC1 transcription. Furthermore, D-arabinose augments ACSS2-dependent CRTC1 transcription by activating AMPK through lysosomal AXIN-LKB1 pathway. Correspondingly, the hippocampal down-regulations of ACSS2, PPARγ or TFEB alone failed to reverse CRTC1 reductions in CRS-exposure mice, ultimately abolishing the anti-depressant efficacy of D-arabinose. In summary, our study unveils a previously unexplored role of D-arabinose in activating the ACSS2-PPARγ/TFEB-CRTC1 axis, presenting it as a promising avenue for the prevention and treatment of depression.


Assuntos
Arabinose , PPAR gama , Camundongos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Arabinose/farmacologia , Arabinose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Encéfalo/metabolismo
12.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38506708

RESUMO

Innate lymphoid cells (ILCs) can promote host defense, chronic inflammation, or tissue protection and are regulated by cytokines and neuropeptides. However, their regulation by diet and microbiota-derived signals remains unclear. We show that an inulin fiber diet promotes Tph1-expressing inflammatory ILC2s (ILC2INFLAM) in the colon, which produce IL-5 but not tissue-protective amphiregulin (AREG), resulting in the accumulation of eosinophils. This exacerbates inflammation in a murine model of intestinal damage and inflammation in an ILC2- and eosinophil-dependent manner. Mechanistically, the inulin fiber diet elevated microbiota-derived bile acids, including cholic acid (CA) that induced expression of ILC2-activating IL-33. In IBD patients, bile acids, their receptor farnesoid X receptor (FXR), IL-33, and eosinophils were all upregulated compared with controls, implicating this diet-microbiota-ILC2 axis in human IBD pathogenesis. Together, these data reveal that dietary fiber-induced changes in microbial metabolites operate as a rheostat that governs protective versus pathologic ILC2 responses with relevance to precision nutrition for inflammatory diseases.


Assuntos
Imunidade Inata , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Interleucina-33 , Inulina , Linfócitos , Fibras na Dieta , Ácidos e Sais Biliares , Inflamação
13.
Sci Immunol ; 9(93): eadj4775, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489352

RESUMO

The gut microbiota promotes immune system development in early life, but the interactions between the gut metabolome and immune cells in the neonatal gut remain largely undefined. Here, we demonstrate that the neonatal gut is uniquely enriched with neurotransmitters, including serotonin, and that specific gut bacteria directly produce serotonin while down-regulating monoamine oxidase A to limit serotonin breakdown. We found that serotonin directly signals to T cells to increase intracellular indole-3-acetaldehdye and inhibit mTOR activation, thereby promoting the differentiation of regulatory T cells, both ex vivo and in vivo in the neonatal intestine. Oral gavage of serotonin into neonatal mice resulted in long-term T cell-mediated antigen-specific immune tolerance toward both dietary antigens and commensal bacteria. Together, our study has uncovered an important role for specific gut bacteria to increase serotonin availability in the neonatal gut and identified a function of gut serotonin in shaping T cell response to dietary antigens and commensal bacteria to promote immune tolerance in early life.


Assuntos
Microbioma Gastrointestinal , Serotonina , Animais , Camundongos , Bactérias , Tolerância Imunológica , Antígenos
14.
IEEE Trans Image Process ; 33: 2388-2403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517716

RESUMO

This paper investigates a novel unpaired video dehazing framework, which can be a good candidate in practice by relieving pressure from collecting paired data. In such a paradigm, two key issues including 1) temporal consistency uninvolved in single image dehazing, and 2) better dehazing ability need to be considered for satisfied performance. To handle the mentioned problems, we alternatively resort to introducing depth information to construct additional regularization and supervision. Specifically, we attempt to synthesize realistic motions with depth information to improve the effectiveness and applicability of traditional temporal losses, and thus better regularizing the spatiotemporal consistency. Moreover, the depth information is also considered in terms of adversarial learning. For haze removal, the depth information guides the local discriminator to focus on regions where haze residuals are more likely to exist. The dehazing performance is consequently improved by more pertinent guidance from our depth-aware local discriminator. Extensive experiments are conducted to validate our effectiveness and superiority over other competitors. To the best of our knowledge, this study is the initial foray into the task of unpaired video dehazing. Our code is available at https://github.com/YaN9-Y/DUVD.

15.
Drug Des Devel Ther ; 18: 699-717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465266

RESUMO

Background: Annao Pingchong decoction (ANPCD) is a traditional Chinese decoction which has definite effects on treating intracerebral hemorrhage (ICH) validated through clinical and experimental studies. However, the impact of ANPCD on oxidative stress (OS) after ICH remains unclear and is worth further investigating. Aim: To investigate whether the therapeutic effects of ANPCD on ICH are related to alleviating OS damage and seek potential targets for its antioxidant effects. Materials and Methods: The therapeutic candidate genes of ANPCD on ICH were identified through a comparison of the target genes of ANPCD, target genes of ICH and differentially expressed genes (DEGs). Protein-protein interaction (PPI) network analysis and functional enrichment analysis were combined with targets-related literature to select suitable antioxidant targets. The affinity between ANPCD and the selected target was verified using macromolecular docking. Subsequently, the effects of ANPCD on OS and the selected target were further investigated through in vivo experiments. Results: Forty-eight candidate genes were screened, in which silent information regulator sirtuin 1 (SIRT1) is one of the core genes that has antioxidant effects and ICH significantly affected its expression. The good affinity between 6 compounds of ANPCD and SIRT1 was also demonstrated by macromolecular docking. The results of in vivo experiments demonstrated that ANPCD significantly decreased modified neurological severity scoring (mNSS) scores and serum MDA and 8-OHdG content in ICH rats, while significantly increasing serum SOD and CAT activity, complicated with the up-regulation of ANPCD on SIRT1, FOXO1, PGC-1α and Nrf2. Furthermore, ANPCD significantly decreased the apoptosis rate and the expression of apoptosis-related proteins (P53, cytochrome c and caspase-3). Conclusion: ANPCD alleviates OS damage and apoptosis after ICH in rats. As a potential therapeutic target, SIRT1 can be effectively regulated by ANPCD, as are its downstream proteins.


Assuntos
Antioxidantes , Sirtuína 1 , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ratos Sprague-Dawley , Farmacologia em Rede , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Proteínas Reguladoras de Apoptose
16.
Cell Rep Med ; 5(3): 101431, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38378002

RESUMO

Sulfasalazine is a prodrug known to be effective for the treatment of inflammatory bowel disease (IBD)-associated peripheral spondyloarthritis (pSpA), but the mechanistic role for the gut microbiome in regulating its clinical efficacy is not well understood. Here, treatment of 22 IBD-pSpA subjects with sulfasalazine identifies clinical responders with a gut microbiome enriched in Faecalibacterium prausnitzii and the capacity for butyrate production. Sulfapyridine promotes butyrate production and transcription of the butyrate synthesis gene but in F. prausnitzii in vitro, which is suppressed by excess folate. Sulfasalazine therapy enhances fecal butyrate production and limits colitis in wild-type and gnotobiotic mice colonized with responder, but not non-responder, microbiomes. F. prausnitzii is sufficient to restore sulfasalazine protection from colitis in gnotobiotic mice colonized with non-responder microbiomes. These findings reveal a mechanistic link between the efficacy of sulfasalazine therapy and the gut microbiome with the potential to guide diagnostic and therapeutic approaches for IBD-pSpA.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Resultado do Tratamento , Butiratos
17.
Cell Death Differ ; 31(4): 479-496, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332049

RESUMO

The appropriate transcriptional activity of PPARγ is indispensable for controlling inflammation, tumor and obesity. Therefore, the identification of key switch that couples PPARγ activation with degradation to sustain its activity homeostasis is extremely important. Unexpectedly, we here show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) critically controls PPARγ activity homeostasis via SIRT1 to enhance adipose plasticity via promoting white adipose tissues beiging and brown adipose tissues thermogenesis. Mechanistically, ACSS2 binds directly acetylated PPARγ in the presence of ligand and recruits SIRT1 and PRDM16 to activate UCP1 expression. In turn, SIRT1 triggers ACSS2 translocation from deacetylated PPARγ to P300 and thereafter induces PPARγ polyubiquitination and degradation. Interestingly, D-mannose rapidly activates ACSS2-PPARγ-UCP1 axis to resist high fat diet induced obesity in mice. We thus reveal a novel ACSS2 function in coupling PPARγ activation with degradation via SIRT1 and suggest D-mannose as a novel adipose plasticity regulator via ACSS2 to prevent obesity.


Assuntos
Homeostase , PPAR gama , Sirtuína 1 , Animais , PPAR gama/metabolismo , Camundongos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Camundongos Endogâmicos C57BL , Humanos , Obesidade/metabolismo , Obesidade/patologia , Fatores de Transcrição/metabolismo , Dieta Hiperlipídica , Masculino , Tecido Adiposo Marrom/metabolismo , Termogênese , Manose/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Tecido Adiposo Branco/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tecido Adiposo/metabolismo
18.
World J Psychiatry ; 14(1): 15-25, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38327884

RESUMO

BACKGROUND: Numerous observational studies have documented a correlation between inflammatory bowel disease (IBD) and an increased risk of dementia. However, the causality of their associations remains elusive. AIM: To assess the causal relationship between IBD and the occurrence of all-cause dementia using the two-sample Mendelian randomization (MR) method. METHODS: Genetic variants extracted from the large genome-wide association study (GWAS) for IBD (the International IBD Genetics Consortium, n = 34652) were used to identify the causal link between IBD and dementia (FinnGen, n = 306102). The results of the study were validated via another IBD GWAS (United Kingdom Biobank, n = 463372). Moreover, MR egger intercept, MR pleiotropy residual sum and outlier, and Cochran's Q test were employed to evaluate pleiotropy and heterogeneity. Finally, multiple MR methods were performed to estimate the effects of genetically predicted IBD on dementia, with the inverse variance wei-ghted approach adopted as the primary analysis. RESULTS: The results of the pleiotropy and heterogeneity tests revealed an absence of significant pleiotropic effects or heterogeneity across all genetic variants in outcome GWAS. No evidence of a causal effect between IBD and the risk of dementia was identified in the inverse variance weighted [odds ratio (OR) = 0.980, 95%CI : 0.942-1.020, P value = 0.325], weighted median (OR = 0.964, 95%CI : 0.914-1.017, P value = 0.180), and MR-Egger (OR = 0.963, 95%CI : 0.867-1.070, P value = 0.492) approaches. Consistent results were observed in validation analyses. Reverse MR analysis also showed no effect of dementia on the development of IBD. Furthermore, MR analysis suggested that IBD and its subtypes did not causally affect all-cause dementia and its four subtypes, including dementia in Alzheimer's disease, vascular dementia, dementia in other diseases classified elsewhere, and unspecified dementia. CONCLUSION: Taken together, our MR study signaled that IBD and its subentities were not genetically associated with all-cause dementia or its subtypes. Further large prospective studies are warranted to elucidate the impact of intestinal inflammation on the development of dementia.

19.
CNS Neurosci Ther ; 30(2): e14627, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353058

RESUMO

BACKGROUND: Systemic inflammation in which lipopolysaccharide (LPS) is released into circulation can cause cognitive dysfunction and we have previously shown that LPS impaired working memory (WM) which refers to the ability to guide incoming behavior by retrieving recently acquired information. However, the mechanism is not very clear, and currently, there is no approved strategy to improve inflammation-induced WM deficit. Notably, epidemiological studies have demonstrated a lower occurrence rate of inflammatory-related diseases in smoking patients, suggesting that inflammation-induced WM impairment may be improved by nicotine treatment. Here, our object is to investigate the effect and potential mechanisms of acute and chronic nicotine treatment on LPS-produced WM deficiency. METHODS: Delayed alternation T-maze task (DAT) was applied for evaluating WM which includes both the short-term information storage and the ability to correct errors in adult male mice. Immunofluorescence staining and immunoblotting were used for assessing the levels and distribution of CREB-regulated transcription coactivator 1 (CRTC1) and hyperpolarization-activated cation channels 2 (HCN2) in the medial prefrontal cortex (mPFC) and hippocampus. Quantitative PCR and ELISA were employed for analyzing the mRNA and protein levels of TNF-α and IL-1ß. RESULTS: Our results revealed that administration of LPS (i.p.) at a dose of 0.5 mg/kg significantly produced WM impairment in the DAT task accompanied by an increase in IL-1ß and TNF-α expression in the mPFC. Moreover, intra-mPFC infusion of IL-1Ra, an IL-1 antagonist, markedly alleviated LPS-induced WM deficiency. More important, chronic (2 weeks) but not acute nicotine (0.2 mg/kg, subcutaneous) treatment significantly alleviated LPS-induced WM deficiency by upregulating CRTC1 and HCN2. Of note, intra-mPFC infusion of HCN blocker ZD7288 produced significant WM deficiency. CONCLUSIONS: In summary, in this study, we show that chronic nicotine treatment ameliorates acute inflammation-induced working memory deficiency by increasing CRTC1 and HCN2 in adult male mice.


Assuntos
Memória de Curto Prazo , Nicotina , Humanos , Camundongos , Masculino , Animais , Memória de Curto Prazo/fisiologia , Nicotina/farmacologia , Nicotina/uso terapêutico , Nicotina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/toxicidade , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Hipocampo/metabolismo , Fatores de Transcrição/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Canais de Potássio/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo
20.
Biomed Pharmacother ; 172: 116269, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367549

RESUMO

AGS-30, a new andrographolide derivative, showed significant anticancer and anti-angiogenic characteristics. However, its role in controlling macrophage polarization and tumor immune response is unknown. Thus, the main goals of this study are to investigate how AGS-30 regulates macrophage polarization and how it suppresses breast cancer metastasis. AGS-30 inhibited IL-4 and IL-13-induced RAW 264.7 and THP-1 macrophages into M2-like phenotype. However, AGS-30 did not affect the LPS and IFN-γ-induced polarization of M1-like macrophages. AGS-30 reduced the mRNA expressions of CD206, Arg-1, Fizz-1, Ym-1, VEGF, IL-10, MMP2, and MMP9 in M2-like macrophages in a concentration-dependent manner. In contrast, andrographolide treatment at 5 µM did not affect M1-like and M2-like macrophage polarization. The conditioned medium from M2-like macrophages increased 4T1 breast cancer cell migration and invasion, whereas AGS-30 inhibited these effects. In the 4T1 breast tumor xenograft mice, the tumor volume and weight were reduced without affecting body weight after receiving AGS-30. AGS-30 treatment also reduced lung and liver metastasis, with reduced STAT6, CD31, VEGF, and Ki67 protein expressions. Moreover, the tumors had considerably fewer M2-like macrophages and Arg-1 expression, but the proportion of M1-like macrophages and iNOS expression increased after AGS-30 treatment. Same results were found in the tail vein metastasis model. In conclusion, this study shows that AGS-30 inhibits breast cancer growth and metastasis, probably through inhibiting M2-like macrophage polarization. Our findings suggest that AGS-30 may be a potential immunotherapeutic alternative for metastatic breast cancer.


Assuntos
Neoplasias da Mama , Diterpenos , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Meios de Cultivo Condicionados , Diterpenos/farmacologia , Neoplasias Mamárias Animais/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...