Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(10): 1948-1961, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37225849

RESUMO

Parkinson's disease (PD) is a common neurodegenerative motor disorder characterized by a dramatic reduction in pars compacta of substantia nigra dopaminergic neurons and striatal dopamine (DA) levels. Mutations or deletions in the PARK7/DJ-1 gene are associated with an early-onset familial form of PD. DJ-1 protein prevents neurodegeneration via its regulation of oxidative stress and mitochondrial function as well as its roles in transcription and signal transduction. In this study, we investigated how loss of DJ-1 function affected DA degradation, ROS generation and mitochondrial dysfunction in neuronal cells. We showed that loss of DJ-1 significantly increased the expression of monoamine oxidase (MAO)-B but not MAO-A in both neuronal cells and primary astrocytes. In DJ-1-knockout (KO) mice, MAO-B protein levels in the substantia nigra (SN) and striatal regions were significantly increased. We demonstrated that the induction of MAO-B expression by DJ-1 deficiency depended on early growth response 1 (EGR1) in N2a cells. By coimmunoprecipitation omics analysis, we found that DJ-1 interacted with receptor of activated protein C kinase 1 (RACK1), a scaffolding protein, and thus inhibited the activity of the PKC/JNK/AP-1/EGR1 cascade. The PKC inhibitor sotrastaurin or the JNK inhibitor SP600125 completely inhibited DJ-1 deficiency-induced EGR1 and MAO-B expression in N2a cells. Moreover, the MAO-B inhibitor rasagiline inhibited mitochondrial ROS generation and rescued neuronal cell death caused by DJ-1 deficiency, especially in response to MPTP stimulation in vitro and in vivo. These results suggest that DJ-1 exerts neuroprotective effects by inhibiting the expression of MAO-B distributed at the mitochondrial outer membrane, which mediates DA degradation, ROS generation and mitochondrial dysfunction. This study reveals a mechanistic link between DJ-1 and MAO-B expression and contributes to understanding the crosslinks among pathogenic factors, mitochondrial dysfunction and oxidative stress in PD pathogenesis.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia , Regulação para Cima , Espécies Reativas de Oxigênio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transdução de Sinais , Doenças Neurodegenerativas/metabolismo , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/farmacologia , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo
2.
Acta Pharmacol Sin ; 40(1): 26-34, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29950615

RESUMO

REV-ERBα, the NR1D1 (nuclear receptor subfamily 1, group D, member 1) gene product, is a dominant transcriptional silencer that represses the expression of genes involved in numerous physiological functions, including circadian rhythm, inflammation, and metabolism, and plays a crucial role in maintaining immune functions. Microglia-mediated neuroinflammation is tightly associated with various neurodegenerative diseases and psychiatric disorders. However, the role of REV-ERBα in neuroinflammation is largely unclear. In this study, we investigated whether and how pharmacological activation of REV-ERBα affected lipopolysaccharide (LPS)-induced neuroinflammation in mouse microglia in vitro and in vivo. In BV2 cells or primary mouse cultured microglia, application of REV-ERBα agonist GSK4112 or SR9011 dose-dependently suppressed LPS-induced microglial activation through the nuclear factor kappa B (NF-κB) pathway. In BV2 cells, pretreatment with GSK4112 inhibited LPS-induced phosphorylation of the inhibitor of NF-κB alpha (IκBα) kinase (IκK), thus restraining the phosphorylation and degradation of IκBα, and blocked the nuclear translocation of p65, a NF-κB subunit, thereby suppressing the expression and secretion of the proinflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor α (TNFα). Moreover, REV-ERBα agonist-induced inhibition on neuroinflammation protected neurons from microglial activation-induced damage, which were also demonstrated in mice with their ventral midbrain microinjected with GSK4112, and then stimulated with LPS. Our results reveal that enhanced REV-ERBα activity suppresses microglial activation through the NF-κB pathway in the central nervous system.


Assuntos
Glicina/análogos & derivados , Microglia/efeitos dos fármacos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Pirrolidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Tiofenos/uso terapêutico , Fator de Transcrição RelA/metabolismo , Animais , Linhagem Celular Tumoral , Glicina/farmacologia , Glicina/uso terapêutico , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Masculino , Mesencéfalo/fisiopatologia , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Pirrolidinas/farmacologia , Tiofenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA