Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 933: 173126, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734105

RESUMO

Studying the toxic effects of pesticides on bees has consistently been a prominent area of interest for researchers. Nonetheless, existing research has predominantly concentrated on individual toxicity assessments, leaving a gap in our understanding of mixed toxicity. This study delves into the individual and combined toxic effects of abamectin (ABA) and lambda-cyhalothrin (LCY) on honey bees (Apis mellifera) in laboratory settings. We discovered that ABA (96 h-LC50 value of 0.079 mg/L) exhibited greater acute toxicity to honey bees compared to LCY (96 h-LC50 value of 9.177 mg/L). Moreover, the mixture of ABA and LCY presented an acute antagonistic effect on honey bees. Additionally, our results indicated that exposure to LCY, at medium concentration, led to a reduction in the abundance of gut core bacterium Snodgrassella. However, an increase in the abundance of Bifidobacterium was noted when exposed to a medium concentration of LCY and its mixture with ABA. Transcriptomic analysis revealed significant regulation of certain genes in the medium concentration of all three treatments compared to the control group, primarily enriching in metabolism and immune-related pathways. Following chronic exposure to field-relevant concentrations of ABA, LCY, and their mixture, there were significant alterations in the activities of immunity-related enzyme polyphenol oxidase (PPO) and detoxification enzymes glutathione S-transferase (GST) and carboxylesterase (CarE). Additionally, the expression of four genes (abaecin, cyp9e2, cyp302a1, and GstD1) associated with immune and detoxification metabolism was significantly altered. These findings suggest a potential health risk posed by the insecticides ABA and LCY to honey bees. Despite exhibiting acute antagonistic effect, mixed exposure still induced damage to bees at all levels. This study advances our knowledge of the potential adverse effects of individual or combined exposure to these two pesticides on non-target pollinators and offers crucial guidance for the use of insecticides in agricultural production.


Assuntos
Inseticidas , Ivermectina , Nitrilas , Piretrinas , Animais , Piretrinas/toxicidade , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Nitrilas/toxicidade , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Inseticidas/toxicidade
2.
Macromol Rapid Commun ; 44(18): e2300223, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37249561

RESUMO

Flexible electrolytes with solid self-supporting properties are highly desired in the fields of energy and electronics. However, traditional flexible electrolytes prepared by doping ionic liquids or salt solutions into a polymer matrix pose a risk of liquid component leakage during device operation. In this work, the development of supramolecular ionic network electrolytes using polyoxometalate nanoclusters as supramolecular crosslinkers to solidify bola-type zwitterionic liquids is reported. The resulting self-supporting electrolytes possess semi-solid features and show a high proton conductivity of 8.2 × 10-4 S cm-1 at low humidity (RH = 30%). Additionally, the electrolytes exhibit a typical plateau region in rheological tests, indicating that their dynamic network structures can contribute mechanical behavior similar to the entangled networks in covalent polymer materials. This work introduces a new paradigm for designing flexible solid electrolytes and expands the concept of reticular chemistry to noncrystalline systems.


Assuntos
Eletrólitos , Prótons , Íons , Polímeros
3.
Nano Lett ; 23(9): 3887-3896, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37094227

RESUMO

Nafion, as the mostly used proton exchange membrane material in vanadium redox flow batteries (VRFBs), encounters serious vanadium permeation problems due to the large size difference between its anionic nanophase (3-5 nm) and cationic vanadium ions (∼0.6 nm). Bulk hybridization usually suppresses the vanadium permeation at the expense of proton conductivity since conventional additives tend to randomly agglomerate and damage the nanophase continuity from unsuitable sizes and intrinsic incompatibility. Here, we report the ionic-nanophase hybridization strategy of Nafion membranes by using fluorinated block copolymers (FBCs) and polyoxometalates (POMs) as supramolecular patching additives. The cooperative noncovalent interactions among Nafion, interfacial-active FBCs, and POMs can construct a 1 nm-shrunk ionic nanophase with abundant proton transport sites, preserved continuity, and efficient vanadium screeners, which leads to a comprehensive enhancement in proton conductivity, selectivity, and VRFB performance. These results demonstrate the intriguing potential of the supramolecular patching strategy in precisely tuning nanostructured electrolyte membranes for improved performance.

4.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982426

RESUMO

There is a growing risk of pollinators being exposed to multiple fungicides due to the widespread use of fungicides for plant protection. A safety assessment of honeybees exposed to multiple commonly used fungicides is urgently required. Therefore, the acute oral toxicity of the ternary mixed fungicide of ABP (azoxystrobin: boscalid: pyraclostrobin = 1:1:1, m/m/m) was tested on honeybees (Apis cerana cerana), and its sublethal effect on foragers' guts was evaluated. The results showed that the acute oral median lethal concentration (LD50) of ABP for foragers was 12.6 µg a.i./bee. ABP caused disorder of the morphological structure of midgut tissue and affected the intestinal metabolism; the composition and structure of the intestinal microbial community was perturbed, which altered its function. Moreover, the transcripts of genes involved in detoxification and immunity were strongly upregulated with ABP treatment. The study implies that exposure to a fungicide mixture of ABP can cause a series of negative effects on the health of foragers. This work provides a comprehensive understanding of the comprehensive effects of common fungicides on non-target pollinators in the context of ecological risk assessment and the future use of fungicides in agriculture.


Assuntos
Fungicidas Industriais , Microbioma Gastrointestinal , Abelhas , Animais , Fungicidas Industriais/toxicidade
5.
Sci Total Environ ; 877: 162884, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933730

RESUMO

The heavy use of agrochemicals is considered a major factor contributing to the decline in wild honeybee populations. Development of low-toxicity enantiomers of chiral fungicides is the key to reducing the potential threats to honeybees. In this study, we evaluated the enantioselective toxic effects of triticonazole (TRZ) on honeybees and its molecular mechanisms. The results showed that after long-term exposure to TRZ, the content of thoracic ATP decreased significantly, by 41 % in R-TRZ treatments and by 46 % in S-TRZ treatments. Furthermore, the transcriptomic results indicated that S-TRZ and R-TRZ significantly altered the expression of 584 genes and 332 genes, respectively. Pathway analysis indicated that R- and S-TRZ could affect different genes expressed in GO terms and metabolic pathways, especially the transport GO terms (GO: 0006810) and pathways of alanine, aspartate and glutamate metabolism, drug metabolism - cytochrome P450, and pentose phosphate. Additionally, S-TRZ had a more pronounced effect on honeybee energy metabolism, disrupting a greater number of genes involved in the TCA cycle and glycolysis/glycogenesis, exerting a stronger effect on energy metabolic pathways, including nitrogen metabolism, sulfur metabolism, and oxidative phosphorylation. In summary, we recommend reducing the proportion of S-TRZ in racemate to minimize the threat to the survival of honeybees and protect the diversity of economic insects.


Assuntos
Metabolismo Energético , Triazóis , Abelhas , Animais , Triazóis/metabolismo , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
6.
Sci Total Environ ; 868: 161637, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36649770

RESUMO

The widespread use of fungicides for plant protection has increased the potential for pollinator exposure. This study therefore aimed at assessing the acute and chronic effects of fungicides on pollinators. For this purpose, the acute oral toxicity of the common fungicides azoxystrobin, pyraclostrobin, and boscalid to Eastern honeybee Apis cerana cerena was first evaluated, and the chronic effects on multiple aspects were investigated after exposure to a one-tenth medium lethal dose (LD50) for 10 days. This study revealed that the LD50 values of azoxystrobin, pyraclostrobin and boscalid for adult Eastern honeybees were 12.7 µg/bee, 36.6 µg/bee, and >119 µg/bee, respectively. Midgut epithelial cells revealed that fungicide exposure caused increased intercellular spaces and varying degrees of vacuolization. Exposure to these three fungicides and their binary mixtures significantly affected glycerophospholipid, alanine, aspartate, and glutamate metabolism in Eastern honeybee midguts. Additionally, the relative composition of Lactobacillus, the dominant functional genus in Eastern honeybee guts decreased and microbial balance was disrupted. All fungicides and their mixtures induced strong transcriptional upregulation of genes associated with the immune response and encoding enzymes related to oxidative phosphorylation and metabolism, including abaecin, apidaecin, hymenotaecin, cyp4c3, cyp6a2 and hbg3. Our study provides important insight for understanding the effects of commonly used fungicides on nontarget pollinator and contributes to a more comprehensive assessment of fungicide effects on ecological and environmental safety.


Assuntos
Fungicidas Industriais , Himenópteros , Abelhas , Animais , Fungicidas Industriais/toxicidade
7.
Angew Chem Int Ed Engl ; 61(44): e202210695, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36106475

RESUMO

Supramolecular polymers (SPs) exhibit intriguing benefits in functional soft materials due to their dynamic bonding feature. However, most SPs can only exist in the solution state and fail to form bulk materials, which limits their applications. Here, we report the fabrication of semi-solid bulk SP materials by using polyoxometalate (POM) nanoclusters as supramolecular cross-linkers to solidify a deep eutectic solvent (DES). The abundant protons and strong hydrogen bonds afforded by POMs enable these SP materials as superprotonic conductive electrolytes with sufficient mechanical strength, showing a proton conductivity more than 1×10-4  S cm-1 and a breaking strength exceeding 1 MPa at room temperature. Moreover, the thermodynamic reversibility of the SP electrolytes allows them to form a stable electrode-electrolyte interface by a facile melt-infiltration strategy upon mild heating, which leads to improved performance in supercapacitors. This work presents an innovative DES/POM hybrid system as a promising platform to develop functional supramolecular materials for energy and electronic applications.

8.
Pestic Biochem Physiol ; 180: 104994, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34955187

RESUMO

Honey bees are important and highly efficient pollinators of agricultural crops and have been negatively affected by insecticides in recent years. Circular RNA (circRNA) plays an important role in the regulation of multiple biological and pathological processes; however, its role in the honey bee brain after exposure to dinotefuran is not well understood. Here, the expression profiles and potential modulation networks of circRNAs in the brains of workers (Apis mellifera) were comprehensively investigated using RNA sequencing and bioinformatics. In total, 33, 144, and 211 differentially expressed (DE) circRNAs were identified on the 1st, 5th and 10th days after exposure to dinotefuran, respectively. Enrichment analyses revealed that the host genes of DE circRNAs were enriched in the Hippo signaling pathway-fly, Wnt signaling pathway, and neuroactive ligand-receptor interaction. circ_0002266, circ_0005080, circ_0010239 and circ_0005415 were found to have translational potential due to the presence of an internal ribosome entry site (IRES). An integrated analysis of the DE circRNA-miRNA-mRNA networks suggest that circ_0008898 and circ_0001829 may participate in the immune response to dinotefuran exposure by acting as miRNA sponges. Our results provide invaluable basic data on A. mellifera brain circRNA patterns and a molecular basis for further study of the biological function of circRNAs in the development and immune response of honey bees.


Assuntos
Abelhas , Guanidinas/toxicidade , Neonicotinoides , Nitrocompostos/toxicidade , RNA Circular , Animais , Abelhas/efeitos dos fármacos , Abelhas/genética , Encéfalo/efeitos dos fármacos , Redes Reguladoras de Genes , Via de Sinalização Hippo , Neonicotinoides/toxicidade , Via de Sinalização Wnt
9.
BMC Genomics ; 22(1): 502, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217210

RESUMO

BACKGROUND: Dinotefuran (CAS No. 165252-70-0), a neonicotinoid insecticide, has been used to protect various crops against invertebrate pests and has been associated with numerous negative sublethal effects on honey bees. Long noncoding RNAs (lncRNAs) play important roles in mediating various biological and pathological processes, involving transcriptional and gene regulation. The effects of dinotefuran on lncRNA expression and lncRNA function in the honey bee brain are still obscure. RESULTS: Through RNA sequencing, a comprehensive analysis of lncRNAs and mRNAs was performed following exposure to 0.01 mg/L dinotefuran for 1, 5, and 10 d. In total, 312 lncRNAs and 1341 mRNAs, 347 lncRNAs and 1458 mRNAs, and 345 lncRNAs and 1155 mRNAs were found to be differentially expressed (DE) on days 1, 5 and 10, respectively. Gene set enrichment analysis (GSEA) indicated that the dinotefuran-treated group showed enrichment in carbohydrate and protein metabolism and immune-inflammatory responses such as glycine, serine and threonine metabolism, pentose and glucuronate interconversion, and Hippo and transforming growth factor-ß (TGF-ß) signaling pathways. Moreover, the DE lncRNA TCONS_00086519 was shown by fluorescence in situ hybridization (FISH) to be distributed mainly in the cytoplasm, suggesting that it may serve as a competing endogenous RNA and a regulatory factor in the immune response to dinotefuran. CONCLUSION: This study characterized the expression profile of lncRNAs upon exposure to neonicotinoid insecticides in young adult honey bees and provided a framework for further study of the role of lncRNAs in honey bee growth and the immune response.


Assuntos
RNA Longo não Codificante , Animais , Abelhas , Encéfalo , Guanidinas , Hibridização in Situ Fluorescente , Neonicotinoides , Nitrocompostos
10.
J Colloid Interface Sci ; 603: 408-417, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34197989

RESUMO

The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm-1 and a high modulus of 39.3 MPa at 150 â„ƒ, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g-1 and a high capacitance retention of 80.0% after 2500 galvanostatic charge-discharge cycles at 150 â„ƒ, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications.

11.
ACS Appl Mater Interfaces ; 13(25): 30039-30050, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34139842

RESUMO

High ionic conductivity, good mechanical strength, strong electrode adhesion, and low volatilization are highly desired properties for flexible solid electrolytes. However, it is difficult to realize all these properties simultaneously, which needs a rational synergy of different electrolyte constituents. Here, we present the use of polyoxometalates as versatile enhancers to fabricate nonvolatile flexible hybrid polymer electrolytes with improved conductive, stretchable, and adhesive properties. These electrolytes are based on the molecular hybridization of a polyacrylate elastomer, phosphoric acid, and a commercial polyoxometalate H3PW12O40 (PW). PW can serve as a nanosized plasticizer to favor the chain relaxation of polyacrylate and improve stretchability. Meanwhile, PW as a solid acid can increase the proton concentration and form a hybrid hydrogen-bonding network to facilitate proton conduction. Besides, the strong adsorption ability of PW on solid surfaces enables the electrolytes with enhanced adhesion. The hybrid electrolyte with 30 wt % PW shows a break stress of 0.28 MPa, a break elongation of 990%, and a conductivity of 0.01 S cm-1 at 298 K, which are 1.8, 1.8, and 2.5 times higher compared to the case without PW, respectively. Moreover, PW enhances the adhesive strength of hybrid electrolytes on polypropylene, steel, and glass substrates. The flexible supercapacitors based on the hybrid electrolytes and polyaniline electrodes hold a stable electrode-electrolyte interface and exhibit a high specific capacitance of 592 mF cm-2 and an excellent capacitance retention of 84% after 6000 charge-discharge cycles. These results demonstrate great potential of polyoxometalates as multifunctional enhancers to design hybrid electrolyte materials for energy and electronic applications.

12.
J Insect Sci ; 21(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33400795

RESUMO

Honey bees are important pollinators of wild plants and crops. MicroRNAs (miRNAs) are endogenous regulators of gene expression. In this study, we initially determined that the lethal concentration 50 (LC50) of dinotefuran was 0.773 mg/l. Then, the expression profiles and differentially expressed miRNAs (DE miRNAs) in honey bee brains after 1, 5, and 10 d of treatment with the lethal concentration 10 (LC10) of dinotefuran were explored via deep small-RNA sequencing and bioinformatics. In total, 2, 23, and 27 DE miRNAs were identified after persistent exposure to the LC10 of dinotefuran for 1, 5, and 10 d, respectively. Some abundant miRNAs, such as ame-miR-375-3p, ame-miR-281-5p, ame-miR-3786-3p, ame-miR-10-5p, and ame-miR-6037-3p, were extremely significantly differentially expressed. Enrichment analysis suggested that the candidate target genes of the DE miRNAs are involved in the regulation of biological processes, cellular processes, and behaviors. These results expand our understanding of the regulatory roles of miRNAs in honey bee Apis mellifera (Hymenopptera: Apidae) responses to neonicotinoid insecticides and facilitate further studies on the functions of miRNAs in honey bees.


Assuntos
Encéfalo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Guanidinas/toxicidade , Inseticidas/toxicidade , MicroRNAs/metabolismo , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Animais , Abelhas , Encéfalo/metabolismo
13.
PeerJ ; 5: e3881, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018616

RESUMO

BACKGROUND: The honey bee (Apis mellifera) is a highly diverse species commonly used for honey production and pollination services. The oviposition of the honey bee queen affects the development and overall performance of the colony. To investigate the ovary activation and oviposition processes on a molecular level, a genome-wide analysis of lncRNAs, miRNAs and mRNA expression in the ovaries of the queens was performed to screen for differentially expressed coding and noncoding RNAs. Further analysis identified relevant candidate genes or RNAs. RESULTS: The analysis of the RNA profiles in different oviposition phase of the queens revealed that 740 lncRNAs, 81 miRNAs and 5,481 mRNAs were differently expressed during the ovary activation; 88 lncRNAs, 13 miRNAs and 338 mRNAs were differently expressed during the oviposition inhibition process; and finally, 100 lncRNAs, four miRNAs and 497 mRNAs were differently expressed during the oviposition recovery process. In addition, functional annotation of differentially expressed RNAs revealed several pathways that are closely related to oviposition, including hippo, MAPK, notch, Wnt, mTOR, TGF-beta and FoxO signaling pathways. Furthermore, in the QTL region for ovary size, 73 differentially expressed genes and 14 differentially expressed lncRNAs were located, which are considered as candidate genes affecting ovary size and oviposition. Moreover, a core set of genes served as bridges among different miRNAs were identified through the integrated analysis of lncRNA-miRNA-mRNA network. CONCLUSION: The observed dramatic expression changes of coding and noncoding RNAs suggest that they may play a critical role in honey bee queens' oviposition. The identified candidate genes for oviposition activation and regulation could serve as a resource for further studies of genetic markers of oviposition in honey bees.

14.
Mol Biol Evol ; 33(5): 1337-48, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26823447

RESUMO

Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies.


Assuntos
Aclimatação/genética , Adaptação Fisiológica/genética , Abelhas/genética , Animais , China , Mudança Climática , Especiação Genética , Genética Populacional , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...