Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(8): 5277-5286, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38587487

RESUMO

A general and practical method for the construction of various 3,4,5-trisubstituted 1,2,4-triazoles via I2-catalyzed cycloaddition of N-functionalized amidines with hydrazones is reported. This strategy features cheap and readily available catalyst and starting materials, broader substrate scope, and moderate-to-good yields. The mechanism study shows that the existence of hydrogen on the nitrogen of hydrazones is crucial for this transformation.

2.
J Hazard Mater ; 470: 134117, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554519

RESUMO

The harmful algal blooms (HABs) can damage the ecological equilibrium of aquatic ecosystems and threaten human health. The bio-degradation of algal by algicidal bacteria is an environmentally friendly and economical approach to control HABs. This study applied an aerobic denitrification synchronization algicidal strain Streptomyces sp. LJH-12-1 (L1) to control HABs. The cell-free filtrate of the strain L1 showed a great algolytic effect on bloom-forming cyanobacterium, Microcystis aeruginosa (M. aeruginosa). The optimal algicidal property of strain L1 was indirect light-dependent algicidal with an algicidal rate of 85.0%. The functional metabolism, light-trapping, light-transfer efficiency, the content of pigments, and inhibition of photosynthesis of M. aeruginosa decreased after the addition of the supernatant of the strain L1 due to oxidative stress. Moreover, 96.05% nitrate removal rate synchronized with algicidal activity was achieved with the strain L1. The relative abundance of N cycling functional genes significantly increased during the strain L1 effect on M. aeruginosa. The algicidal efficiency of the strain L1 in the raw water was 76.70% with nitrate removal efficiency of 81.4%. Overall, this study provides a novel route to apply bacterial strain with the property of denitrification coupled with algicidal activity in treating micro-polluted water bodies.


Assuntos
Desnitrificação , Proliferação Nociva de Algas , Microcystis , Microcystis/metabolismo , Nitrogênio/metabolismo , Streptomyces/metabolismo , Nitratos/metabolismo , Fotossíntese
3.
Sci Total Environ ; 922: 171285, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423304

RESUMO

The role of environmental factors on the community structure of algae has been intensively studied, but there are few analyses on the assembly mechanism of the algal community structure. Here, changes in the community structure of algae in different seasons, the effects of environmental variables on the algal community structure, and the assembly mechanism of the algal community structure in northern and southern reservoirs were investigated in this study. The study revealed that Bacillariophyta, Cyanophyta, and Chlorophyta were the predominant algal species in the reservoirs, with Bacillariophyta and Cyanophyta exhibiting seasonal outbreaks. Compared to the northern reservoirs, the algal diversity in the southern reservoirs was greater. The diversity and algal community structure could be significantly impacted by variations in water temperature and nitrogen level. According to the ecological model, the interaction among algal communities in reservoirs was primarily cooperation. The key taxa in the northern reservoirs was Aphanizomenon sp., while the outbreak in the southern reservoirs was Coelosphaerium sp. The community formation pattern of reservoirs was stochastic, with a higher degree of explanation observed in the southern reservoirs compared to the northern reservoirs. This study preliminarily explored the assembly mechanism of the algal community, providing a theoretical basis for the control of eutrophication in drinking water reservoirs.


Assuntos
Cianobactérias , Diatomáceas , Água Potável , Água Potável/análise , Fitoplâncton , Estações do Ano , Eutrofização , China , Fósforo/análise
4.
Environ Res ; 236(Pt 2): 116830, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543131

RESUMO

Nitrogen pollution poses a severe threat to aquatic ecosystems and human health. This study investigated the use of water lifting aerators for in situ nitrogen reduction in a drinking water reservoir. The reservoir was thoroughly mixed and oxygenated after using water-lifting aerators for 42 days. The average total nitrogen concentration, nitrate nitrogen, and ammonium nitrogen-in all water layers-decreased significantly (P < 0.01), with a reduction efficiency of 35 ± 3%, 34 ± 2%, and 70 ± 6%, respectively. Other pollutants, including organic matter, phosphorus, iron, and manganese, were also effectively removed. Quantitative polymerase chain reactions indicated that bacterial nirS gene abundance was enhanced 26.34-fold. High-throughput sequencing, phylogenetic tree, and network analysis suggested that core indigenous nirS-type denitrifying bacteria, such as Dechloromonas, Simplicispira, Thauera, and Azospira, played vital roles in nitrogen and other pollutant removal processes. Furthermore, structural equation modeling revealed that nitrogen removal responded positively to WT, DO, and nirS gene abundance. Our findings provide a promising strategy for nitrogen removal in oligotrophic drinking water reservoirs with carbon deficiencies.

5.
Bioresour Technol ; 387: 129656, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595809

RESUMO

Aerobic denitrification technology can effectively abate the nitrogen pollution of water source reservoirs. In this study, 40% siliceous material was used as the carrier to replace the activated carbon in Fe/C material to enhance denitrification and purify water. The removal efficiency of new material for target pollutants were nitrate nitrogen (95.68%), total phosphorus (68.23%) and chemical oxygen demand (46.20%). Aerobic denitrification of water samples and anaerobic denitrification of sediments in three systems jointly assisted nitrogen removal. In a reactor with new material, diversity and richness of denitrifying bacterial communities were enhanced, and the symbiotic structure of aerobic denitrifying bacteria was more complex (Bacillus and Mycobacteria as the dominant bacteria); the microbial distribution better matched the Zif and Mandelbrot models. This system significantly increased the abundance of key enzymes in water samples. The new material effectively removed pollutants and represents a promising and innovative in-situ remediation method for reservoirs.


Assuntos
Carvão Vegetal , Poluentes Ambientais , Desnitrificação , Biodiversidade , Ferro
6.
Sci Total Environ ; 898: 165473, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454840

RESUMO

Endogenous pollution due to long periods of hypolimnetic anoxia in stratified reservoirs has become a worldwide concern, which can threaten metabolic activity, biodiversity, water quality security, and ultimately human health. In the present study, an artificial mixing system applied in a drinking water reservoir was developed to reduce pollutants, and the biological mechanism involved was explored. After approximately 44 days of system operation, the reservoir content was completely mixed resulting in the disappearance of anoxic layers. Furthermore, the metabolic activity estimated by the Biolog-ECO microplate technique and biodiversity was enhanced. 16S rRNA gene sequencing indicated a great variability on the composition of bacterial communities. Co-occurrence network analysis showed that interactions among bacteria were significantly affected by the proposed mixing system. Bacteria exhibited a more mutualistic state and >10 keystone genera were identified. Pollutants, including nitrogen, phosphorus, organic matter, iron, and manganese decreased by 30.63-80.15 %. Redundancy discriminant analysis revealed that environmental factors, especially the temperature and dissolved oxygen, were crucial drivers of the bacterial community structure. Furthermore, Spearman's correlation analysis between predominant genera and pollutants suggested that core genus played a vital role in pollutant reduction. Overall, our findings highlight the importance and provide insights on the artificial mixing systems' microbial mechanisms of reducing pollutants in drinking water reservoirs.


Assuntos
Água Potável , Poluentes Ambientais , Humanos , RNA Ribossômico 16S/genética , Bactérias/genética , Biodiversidade
7.
J Environ Manage ; 341: 118071, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148762

RESUMO

Applying exogenous additives during the aerobic composting of livestock manure is effective for slowing down the spread of antibiotic resistance genes (ARGs) in the environment. Nanomaterials have received much attention because only low amounts need to be added and they have a high capacity for adsorbing pollutants. Intracellular ARGs (i-ARGs) and extracellular ARGs (e-ARGs) comprise the resistome in livestock manure but the effects of nanomaterials on the fates of these different fractions during composting are still unclear. Thus, we investigated the effects of adding SiO2 nanoparticles (SiO2NPs) at four levels (0 (CK), 0.5 (L), 1 (M), and 2 g/kg (H)) on i-ARGs, e-ARGs, and the bacterial community during composting. The results showed that i-ARGs represented the main fraction of ARGs during aerobic composting of swine manure, and their abundance was lowest under M. Compared with CK, M increased the removal rates of i-ARGs and e-ARGs by 17.9% and 100%, respectively. SiO2NPs enhanced the competition between ARGs hosts and non-hosts. M optimized the bacterial community by reducing the abundances of co-hosts (Clostridium_sensu_stricto_1, Terrisporobacter, and Turicibacter) of i-ARGs and e-ARGs (by 96.0% and 99.3%, respectively) and killing 49.9% of antibiotic-resistant bacteria. Horizontal gene transfer dominated by mobile genetic elements (MGEs) played a key role in the changes in the abundances of ARGs. i-intI1 and e-Tn916/1545 were key MGEs related closely to ARGs, and the maximum decreases of 52.8% and 100%, respectively, occurred under M, which mainly explained the decreased abundances of i-ARGs and e-ARGs. Our findings provide new insights into the distribution and main drivers of i-ARGs and e-ARGs, as well as demonstrating the possibility of adding 1 g/kg SiO2NPs to reduce the propagation of ARGs.


Assuntos
Compostagem , Nanopartículas , Animais , Suínos , Genes Bacterianos , Dióxido de Silício , Antibacterianos/farmacologia , Esterco/microbiologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Gado , Sequências Repetitivas Dispersas
8.
Org Biomol Chem ; 21(20): 4269-4275, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37139598

RESUMO

1,2-Dihydro-1,3,5-triazine compounds were synthesized through three sets of reactions of amidines with, respectively, paraformaldehyde, aldehydes and N-arylnitrones under different conditions. The catalysts used in these three reactions were Cu(OAc)2, ZnI2 and CuCl2·2H2O, respectively. Most of the substrates tested for these reactions provided the target products in moderate to good yields. In the reactions involving paraformaldehyde, Cu(OAc)2 also accelerated the release of formaldehyde from paraformaldehyde during the catalytic reaction process. In the case of the reactions involving nitrones, CuCl2·2H2O not only catalyzed the normal progress of the main reaction, but also promoted the reaction of nitrones to produce nitroso compounds and aldehydes.

9.
Sci Total Environ ; 874: 162006, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36791852

RESUMO

The gut microbiota is a repository of antibiotic resistance genes (ARGs), which may affect the health of humans and animals. The intestinal flora is affected by many factors but it is unclear how the intestinal microflora and antibiotic resistome in rabbits might change under dietary intervention. Feeding with lettuce led to the amplification and transfer of exogenous ARGs in the intestinal flora, but there were no significant differences when fed lettuces grown with different manure types. For example, the lsaC of lettuce fed with bovine, chicken and pig manure without adding organic fertilizer increased by 0.143, 0.151, 0.179 and 0.169 logs respectively after 4 weeks, and the efrB also increased by 0.074, 0.068, 0.079 and 0.106 logs respectively. Network analysis showed that Clostridium_ sensu_ stricto_ 18 was a potential host of type 6 virulence factor genes (VFGs). Mantel analysis showed that ARGs were directly influenced by mobile genetic elements (MGEs) and VFGs. Thus, feeding rabbits lettuce grown with different manure types contribute to the transmission of ARGs by remodeling the intestinal microenvironment. In addition, diet may affect exogenous ARGs to change the intestinal antibiotic resistome and possibly threaten health.


Assuntos
Microbioma Gastrointestinal , Humanos , Animais , Coelhos , Bovinos , Suínos , Genes Bacterianos , Esterco , Antibacterianos/farmacologia , Dieta/veterinária , Lactuca
10.
J Environ Manage ; 325(Pt B): 116421, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308953

RESUMO

Inoculation with microorganisms is an effective strategy for improving traditional composting processes. This study explored the effects of inoculation with lignocellulose-degrading microorganisms (LDM) on the degradation of organic matter (OM), methane (CH4) emissions, and the microbial community (bacteria and methanogens) during composting. The results showed that LDM accelerated the degradation of OM (including the lignocellulose fraction) and increased the CH4 releases in the later thermophilic and cooling stages during composting. At the ending of composting, LDM increased the CH4 emissions by 38.6% compared with the control. Moreover, LDM significantly increased the abundances of members of the bacterial and methanogenic community during the later thermophilic period (P < 0.05). In addition, LDM promoted the growth and activity of major bacterial genera (e.g., Ureibacillus) with the ability to degrade macromolecular OM, as well as affecting key methanogens (e.g., Methanocorpusculum) in the composting system. Network analysis and variance partitioning analysis indicated that OM and temperature were the main factors that affected the bacterial and methanogen community structures. Structural equation modeling demonstrated that the higher CH4 emissions under LDM were related to the growth of methanogens, which was facilitated by the anaerobic environment produced by large amounts of CO2. Thus, aerobic conditions should be improved during the end of the thermophilic and cooling composting period when inoculating with lignocellulose-degrading microorganisms in order to reduce CH4 emissions.


Assuntos
Compostagem , Euryarchaeota , Metano , Solo , Lignina/metabolismo , Euryarchaeota/metabolismo , Bactérias/metabolismo , Esterco/microbiologia
11.
Water Res ; 225: 119161, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191525

RESUMO

Eutrophication and algal blooms have become global issues. The drinking water treatment process suffers from pollution by algal organic matter (AOM) through cell lysis during the algal blooms. Nevertheless, it remains unclear how AOM invasion affects water quality and microbial communities in drinking water, particularly in the stagnant settings. In this study, the addition of AOM caused the residual chlorine to rapidly degrade and below the limit of 0.05 mg/L, while the NO2--N concentration ranged from 0.11 to 3.71 mg/L. Additionally, total bacterial counts increased and subsequently decreased. The results of Biolog demonstrated that the AOM significantly improved the utilization capacity of carbon sources and changed the preference for carbon sources. Full-length 16S rRNA gene sequencing and network modeling revealed a considerable reduction in the abundance of Proteobacteria, whereas that of Bacteroidetes increased significantly under the influence of AOM. Furthermore, the species abundance distributions of the Microcystis group and Scenedesmus group was most consistent with the Mandelbrot model. According to redundancy analysis and structural equation modeling, the bacterial community structure of the control group was most positively regulated by the free residual chlorine concentrations, whereas the Microcystis group and Scenedesmus group were positively correlated with the total organic carbon (TOC) concentration. Overall, these findings provide a scientific foundation for the evolution of drinking water quality under algae bloom pollution.


Assuntos
Água Potável , Microcystis , Scenedesmus , Cloro/química , Água Potável/metabolismo , Hidrodinâmica , RNA Ribossômico 16S/metabolismo , Dióxido de Nitrogênio/metabolismo , Microcystis/metabolismo , Carbono/metabolismo
12.
Cancers (Basel) ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740493

RESUMO

The accumulating evidence demonstrates that the apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC), DNA-editing protein plays an important role in the molecular pathogenesis of cancer. In particular, the APOBEC3 family was shown to induce tumor mutations by an aberrant DNA editing mechanism. However, knowledge regarding the reconstitution of the APOBEC family genes across cancer types is still lacking. Here, we systematically analyzed the molecular alterations, immuno-oncological features, and clinical relevance of the APOBEC family in pan-cancer. We found that APOBEC genes were widely and significantly differentially expressed between normal and cancer samples in 16 cancer types, and that their expression levels are significantly correlated with the prognostic value in 17 cancer types. Moreover, two patterns of APOBEC-mediated stratification with distinct immune characteristics were identified in different cancer types, respectively. In ACC, for example, the first pattern of APOBEC-mediated stratification was closely correlated with the phenotype of immune activation, which was characterized by a high immune score, increased infiltration of CD8 T cells, and higher survival. The other pattern of APOBEC-mediated stratification was closely correlated with the low-infiltration immune phenotype, which was characterized by a low immune score, lack of effective immune infiltration, and poorer survival. Further, we found the APOBEC-mediated pattern with low-infiltration immune was also highly associated with the advanced tumor subtype and the CIMP-high tumor subtype (CpG island hypermethylation). Patients with the APOBEC-mediated pattern with immune activation were more likely to have therapeutic advantages in ICB (immunological checkpoint blockade) treatment. Overall, our results provide a valuable resource that will be useful in guiding oncologic and therapeutic analyses of the role of APOBEC family in cancer.

13.
J Environ Manage ; 316: 115308, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35658259

RESUMO

Additives can play important roles in effectively inhibiting nitrogen losses during livestock manure composting due to the activities of microbes. This study investigated the effects of adding nanocellulose at 300 mg/kg, 600 mg/kg, and 900 mg/kg (NC900) on nitrogen conversion, nitrogen conversion functional genes, and related microorganisms during composting. The results showed that compared with the control, nanocellulose hindered the ammoniation reaction. In addition, NC900 promoted nitrification, interfered with the denitrification process, and reduced the abundance of the nirK gene, thereby increasing the nitrate nitrogen content and decreasing ammonia spillover. NC900 promoted nitrogen fixation by increasing the abundance of members of Rhizobiales, which play important roles in nitrogen fixation. In general, compared with the control, NC900 improved the retention of nitrogen by controlling ammonia emissions. The results obtained in this study demonstrate that nanocellulose can be applied in the treatment of organic solid waste and agricultural production.


Assuntos
Compostagem , Amônia , Esterco , Nitrogênio , Solo
14.
J Environ Manage ; 315: 115139, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512600

RESUMO

The degradation of organic matter (OM) and CH4 emissions during composting greatly influence the composting efficiency and greenhouse effect. This study evaluated the effects of adding phosphogypsum (PPG) and medical stone (MS) on OM breakdown, CH4 emissions, and their underlying mechanisms. MS accelerated the breakdown of OM in the early composting stage, whereas PPG increased it in the cooling and maturation periods. At the ending of composting, humification was also significantly promoted by PPG and MS (P < 0.05). Moreover, MS and PPG reduced CH4 emissions by 27.64% and 23.12%, respectively, and significantly inhibited the activities of methanogens in terms of their abundance (mcrA) and composition (dominant genera such as Methanobrevibacter, Methanocorpusculum, and Methanothermus) (P < 0.05). Interestingly, MS enhanced the activity of enzymes and bacterial metabolism related to OM degradation in the early composting stage, whereas PPG promoted them during the cooling and maturity stages. MS and PPG inhibited the activities of enzymes related to CH4 release during the cooling and maturity stages. Therefore, PPG and MS may have influenced OM degradation and CH4 releases during composting via changes in bacterial metabolism and enzyme activity levels. PPG and MS could have altered the activities of methanogens to influence the transformation of carbon and CH4 emissions according to network analysis and partial least-squares path modeling analysis. These findings provide insights at the molecular level into the effects of adding PPG and MS on OM degradation and CH4 emissions during composting, thereby facilitating the application of PPG and MS in composting systems.


Assuntos
Compostagem , Animais , Bactérias , Sulfato de Cálcio , Esterco , Metano/análise , Nitrogênio/análise , Fósforo , Solo , Suínos
15.
Bioresour Technol ; 355: 127236, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35487450

RESUMO

Plant-derived and animal manure-derived biochars have been used to improve the quality of compost but the differences in their effects on antibiotic resistance genes (ARGs) during composting are unclear. This study selected two types of biochar (RB and PB) produced from abundant agricultural waste to be added to the compost. Adding plant-derived RB performed better in ARGs, mobile genetic elements, and human pathogenic bacteria removal during aerobic composting, whereas adding manure-derived PB even increased ARGs abundance. Vertical gene transfer was possibly the key mechanism for persistent ARGs, and easily removed ARGs were regulated by horizontal and vertical gene transfer. Adding plant-derived RB reduced the abundances of persistent ARG hosts (e.g., Pseudomonas and Longispora) and ARG-related metabolic pathways and genes. The higher nitrogen content of manure-derived PB may have promoted the proliferation of ARG hosts. Overall, adding manure-derived biochar during composting may not be the optimal option for eliminating ARGs.


Assuntos
Compostagem , Animais , Antibacterianos/farmacologia , Carvão Vegetal , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Esterco/microbiologia
16.
Sci Total Environ ; 821: 153199, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063512

RESUMO

Diatomite (DE) has been used for nitrogen conservation during the composting of feces but its effects on antibiotic resistance genes (ARGs) and the associated mechanisms are still unclear. In this study, DE was added at three different proportions (0%, 4%, and 8%) to swine manure during composting. The results showed that adding DE helped to reduce the abundances of ARGs and the maximum decrease (88.99%) occurred with the highest dose. DE amendment promoted the transformation of reducible copper into a more stable form, i.e., the residual fraction, which reduced the selective pressure imposed by copper and further decreased the abundances of ARGs. Tn916/1545 and intI1 were critical genetic components related to ARGs, and thus the reductions in the abundances of ARGs may be attributed to the suppression of horizontal transfer due to the decreased abundances of mobile genetic elements (MGEs). The microbial community structure (bacterial abundance and diversity) played key role in the evolution of ARGs. DE could enhance the competition between hosts and non-hosts of ARGs by increasing the bacterial community diversity. Compared with CK, DE amendment optimized the bacterial community by reducing the abundances of the potential hosts of ARGs and pathogens such as Corynebacterium, thereby improving the safety of the compost product. In addition, KEGG function predictions revealed that adding DE inhibited the metabolic pathway and genes related to ARGs. Thus, composting with 8% DE can reduce the risk of ARG transmission and improve the practical value for agronomic applications.


Assuntos
Compostagem , Animais , Antibacterianos/farmacologia , Terra de Diatomáceas , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Esterco/microbiologia , Suínos
17.
Bioresour Technol ; 347: 126727, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35063626

RESUMO

Manures are storages for antibiotic resistance genes (ARGs) entering the environment. This study investigated the effects of adding sepiolite at 0%, 2.5%, 5%, and 7.5% (CK, T1, T2, and T3, respectively) on the fates of ARGs during composting. The relative abundances (RAs) of the total ARGs in CK and T3 decreased by 0.23 and 0.46 logs, respectively, after composting. The RAs of 10/11 ARGs decreased in CK, whereas they all decreased in T3. The reduction in the RA of the total mobile genetic elements (MGEs) was 1.26 times higher in T3 compared with CK after composting. The bacterial community accounted for 47.93% of the variation in the abundances of ARGs. Network analysis indicated that ARGs and MGEs shared potential host bacteria (PHB), and T3 controlled the transmission of ARGs by reducing the abundances of PHB. Composting with 7.5% sepiolite is an effective strategy for reducing the risk of ARGs proliferating.


Assuntos
Compostagem , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Silicatos de Magnésio , Esterco , Suínos
18.
Bioresour Technol ; 344(Pt A): 126176, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34688858

RESUMO

The denitrification characteristics of actinomyetes in aquatic ecosystem under aerobic conditions are not well known. Here, two actinomyetes strains M5 and M6 were separated and annotated as Streptomyces sp. Strains M5 and M6 could reduce 95.02% and 96.84 % of total nitrogen, 98.14 % and 97.02 % of total organic carbon under aerobic condition. Nitrogen balance analysis indicated that 78.60 % and 83.01 % of nitrogen was translated into gaseous, with 13.48 % and 10.77 % of nitrogen was assimilated into biomass for strains M5 and M6. The highest removal efficiency of nitrate of strains M5 and M6 in micro-polluted water bodies were 88.61 % and 82.53 %, respectively. Moreover, strains M5 and M6 exhibited remarkable carbon metabolic capacity, especially for esters. Altogether, this study provides a new perspective for understanding the performance of actinomyetes in aerobic denitrification and micro-polluted water reparation.


Assuntos
Actinobacteria , Purificação da Água , Aerobiose , Carbono , Desnitrificação , Ecossistema , Nitratos , Nitrificação , Nitrogênio
19.
J Environ Manage ; 300: 113734, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34649327

RESUMO

Treatment with exogenous additives during composting can help to alleviate the accumulation of antibiotic resistance genes (ARGs) caused by the direct application of pig manure to farmland. In addition, nano-cellulose has an excellent capacity for adsorbing pollutants. Thus, the effects of adding 300, 600, and 900 mg/kg nano-cellulose to compost on the bacterial communities, mobile genetic elements (MGEs), and ARGs were determined in this study. After composting, treatment with nano-cellulose significantly reduced the relative abundance of ARGs, which was lowest in the compost product with 600 mg/kg added nano-cellulose. Nano-cellulose inhibited the rebound in ARGs from the cooling period to the maturity period, and weakened the selective pressure of heavy metals on microorganisms by passivating bio-Cu. The results also showed that MGEs explained most of the changes in the abundances of ARGs, and MGEs had direct effects on ARGs. The addition of 600 mg/kg nano-cellulose reduced the abundances of bacterial genera associated with ermQ, tetG, and other genes, and the number of links (16) between ARGs and MGEs was lowest in the treatment with 600 mg/kg added nano-cellulose. Therefore, adding 600 mg/kg nano-cellulose reduced the abundances of ARGs by affecting host bacteria and MGEs. The results obtained in this study demonstrate the positive effect of nano-cellulose on ARG pollution in poultry manure, where adding 600 mg/kg nano-cellulose was most effective at reducing the abundances of ARGs.


Assuntos
Compostagem , Animais , Antibacterianos/farmacologia , Bactérias/genética , Celulose , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Esterco , Suínos
20.
Bioresour Technol ; 342: 125903, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34534940

RESUMO

Antibiotic resistance genes (ARGs) in manure endangered human health, while heavy metals in manure will pose selective pressure on ARGs. This study explored the effects on ARGs of adding woody peat during composting at different ratios (0 (CK), 5% (T1), and 15% (T2)). After composting, the relative abundances of 8/11 ARGs were 6.97-38.09% and 10.73-54.31% lower in T1 and T2, respectively, than CK. The bioavailable Cu content was 1.40% and 18.40% lower in T1 and T2, respectively, than CK. Network analysis showed that ARGs, mobile genetic elements (MGEs), and metal resistance genes possessed common potential host bacteria, such as Streptococcus, Dietzia, and Corynebacterium_1. Environmental factors, especially bioavailable Cu, and MGEs accounted for 80.75% of the changes in the abundances of ARGs. In conclusion, 15% Woody peat is beneficial to decrease the bioavailable Cu content and weaken horizontal gene transfer for controlling the spread of ARGs during composting.


Assuntos
Compostagem , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Humanos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...